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1 Recall of matrices definitions and properties

1.1 dimension

The dimension of a square matrix is the number of rows that is equal to the number of

columns.

1.2 orthogonal and unitary matrices

It’s useful to recall the following definitions:

• inverse of a matrix = A A−1 = I

• transposed (numerical) matrix AT = swap each row with the column, in the same

order

• orthogonal (numerical) matrix = a real matrix for which the transposed matrix is

also inverse: A AT = I. It can be shown that this property is equivalent to the

following other: all the rows form an orthonormal set of vectors, and so do all the

columns.

• unitary (numerical) matrix = a complex valued matrix A for which the conjugate

transposed matrix (also called hermitian adjoint and denoted with A†) is also

inverse: A A† = I

1.3 trace

The trace of a square matrix as the sum of the elements on the principal diagonal.

Is possible to demonstrate (theorem) that the trace doesn’t change if we apply a simi-

larity transformation.
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2 Definitions

2.1 Group

Definition 2.1 (definition of a group) A group G is a set of elements with a binary

operation (G X G) → G which assigns to every ordered pair of elements x, y ∈ G

a unique third element of G (usually called the product of x and y) denoted by xy such

that the following four properties are satisfied:

1. Closure: R, S ∈ G⇒ RS ∈ G.

2. Associative law: R, S,K ∈ G⇒ R(SK) = (RS)K.

3. Identity element: ∃ E ∈ G : ER = RE = R∀R ∈ G.

4. Inverses: ∀R ∈ G,∃ R−1 ∈ G : RR−1 = R−1R = E.

2.1.1 order of a group

Definition 2.2 (order of a group) the number of elements of a group is called the

order of the group

2.1.2 multiplication table

Definition 2.3 (multiplication table) To describe a finite group, a table that gives

the result for all the possible multiplications is used:

G E A2 A3

E A11 A12 A13

A2 A21 A22 A23

A2 A31 A32 A33

(cfr appendix G.0.2)
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2.1.3 subgroup

Definition 2.4 (subgroup) A subset of elements of the group that still fulfils the def-

initions of a group. (note: in a subgroup the identity has to be present)

2.1.4 similarity transformations

If we choose an element X of the group, we can “transform” it using another element

of the group Z and it’s inverse Z−1 in the following way:

Z−1XZ = Y (1)

it is easy to show that

X = ZY Z−1 (2)

the two elements of the group, X and Y are said to be conjugate, or similar, and the

transformation is called a similarity transformation.

2.2 Class

A class is a complete set of elements which are conjugate to one another. In other words,

if I choose an element of the group, and I find all the other elements of the group that

are similar to it, I build the class to which the element belongs to.

In general (but not always) operations of a point group that produce similar effects (i.e.

rotations, reflections) are in the same class.

Example, classes of the C3v group (cfr [HB80] page 48)

3 Representations

3.1 definition of representation

In general a group is an “abstract mathematical entity”, defined by it’s multiplication

table (i.e. the relationship between it’s elements, i.e. its “internal structure”). So, any
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group of mathematical objects that is homomorphic to the abstract group is a repre-

sentation of the group. However it is usual to use the term representation of a group

for any group of square numerical matrices homomorphic to the abstract group, where

the “row by column” multiplication between matrices is used as the internal operation

of the group.

If each matrix of the representation is different, the matrices group is isomorphic to the

abstract group, and not only homeomorphic.

To set the notation, if we associate the matrix D(R) to the abstract group element R,

we have:

∀R, S ∈ G,D(R)D(S) = D(RS) (3)

This relation provides that the multiplication table of the two groups (abstract and

matrices) is the same.

3.2 dimension (or dimensionality) of a representation

Definition 3.1 (dimensionality of a representation) The dimension of the matri-

ces of a representation is said to be the dimensionality (or just dimension) of the rep-

resentation.

3.3 equivalent representations

Definition 3.2 two representations are equivalent if exists a single matrix (of any form)

that transforms the elements of one representation into the elements of the other

(cfr [WG59] pag 73)

3.4 irreducible representation

In general the matrices of a representation are reducible, i.e. it is possible do partially

diagonalise them (with a similarity transformation) so that they get the form of a block
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diagonal matrix. Since the matrix multiplication will not mix the blocks, each block will

have the same multiplication table, i.e. each block will be a good representation of the

group.

We could take only one block as representation, and try to (block) diagonalise them.

If no more diagonalisation is possible, the representation is said to be an irreducible

representation (cfr [WG59] pag 73)

4 Theorems on representations

4.1 Important theorems about the orthogonality of the matrix

elements of irreducible representations

Theorem 4.1 (Orthogonality relation for the coefficients of an unitary irred. repr.)

(unitary representations) If

D(1)(E), D(1)(A2), · · · , D(1)(Ah)

and

D(2)(E), D(2)(A2), · · · , D(2)(Ah)

are two inequivalent, irreducible, unitary representations of the same group, then∑
R

D(1)(R)∗µν D
(2)(R)αβ = 0 (4)

holds for all elements µν and αβ. For the elements of a single unitary, irreducible

representation, we have∑
R

D(1)(R)∗µν D
(1)(R)µ′ν′ =

h

l1
δµµ′δνν′ (5)

where h is the order of the group, l1 is the dimension of the representation, and the

symbol
∑

R means sum over all the group elements E,A2, A3, · · · , Ah of the group.

([WG59] theor. 4, pag. 79)
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Theorem 4.2 (Orthogonality relation for the coefficients of an irred. repr.) (general

case)

If

D(1)(E), D(1)(A2), · · · , D(1)(Ah)

and

D(2)(E), D(2)(A2), · · · , D(2)(Ah)

are two inequivalent, irreducible, representations of the same group ( not necessarily

unitary), then∑
R

D(2)(R)αβ D
(1)(R)−1µν = 0 (6)

holds for all elements µν and αβ.

For the elements of a single irreducible representation, we have∑
R

D(1)(R)µν D
(1)(R−1)µ′ν′ =

h

l1
δµµ′δνν′ (7)

([WG59] formula (9.31a) pag. 81)

(remember that for unitary matrices D(1)(R−1) = [D(1)(R)]−1 = D(1)(R)†, so the case

of unitary representations is consistent with this general case)

4.2 irreducible representations and classes

Theorem 4.3 the number of the irreducible representations of a group is equal to the

number of classes of the group.

(this was not taken from [WG59])

5 Character of a representation

(cfr [WG59], pag 81-83)
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5.1 definition of characters

Definition 5.1 (Character of a representation) Given a representation of a group,

for each matrix we can consider its trace, which we denote as

χ(j)(R) ≡
lj∑
µ=1

D(j)(R)µµ. (8)

In this way, for each representation we have a set of h numbers χ(j)(E), χ(j)(A2), · · · , χ(j)(Ah).

This set of numbers will be called the character of the representation.

The specification of a representation by means of the character (set of {χ(j)(R)} values)

has the advantage to be invariant under similarity transformations.

Theorem 5.1 the characters of the elements in the same class are the same

(cfr [WG59], end of page 83)

5.2 definition of normalised characters

Let be G a group, and let it consist of k classes C1, C2, · · · , Ck, and let g1, g2, · · · , gk be

the number of elements for each class (g1 + g2 + · · ·+ gk = h).

Since the characters of the matrices that represent group’s elements in the same class

are equal, we can introduce the k characters that will be called characters of the classes,

and will be denoted with

χ(j)(Cρ)

with this notation, the orthogonality relation 7 becomes:

k∑
ρ=1

χ(j)(Cρ) χ
(j′)(Cρ)

∗ gρ = h δjj′ (9)

Definition 5.2 (normalised characters of a representation) The scalars χ(j)(Cρ)·√
gρ
h

are called normalised characters
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6 Theorems on characters

6.1 orthogonality of characters sets

(cfr [WG59] pag 83)

Theorem 6.1 The set of characters of the irreducible representations of a group form

an orthogonal vector system in the space of the group elements. In other words, two

characters of two irreducible representations (two vectors of dimension h) are orthogonal:

∑
R

χ(j)(R) χ(j′)(R)∗ = hδjj′ (10)

6.2 orthonormality of normalised characters sets

Theorem 6.2 The normalised characters χ(j)(Cρ)
√

gρ
h

form an orthonormal vector sys-

tem in the k-dimensional space of the classes of a group.

7 Application to quantum mechanics

(cfr. [WG59] cap 11, pag. 102)

7.1 two particles systems

(cfr. [WG59] section 2, pag. 102) Let’s consider a system of two indistinguishable

particles. Let’s assume that the particles have one degree of freedom each. Let’s also

consider a non degenerate eigenvalue of the energy E, and its eigenfunction ψ(x1, x2):

Hψ(x1, x2) = Eψ(x1, x2)

− ~2

2m

(
d2

dx21
+ d2dx22

)
ψ(x1, x2) + V (x1, x2)ψ(x1, x2) = Eψ(x1, x2)
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If the particles are identical, by definition the physics of the system have to be the same

if we swap the two particles. To mathematically represent the swapping we introduce

an operator P that acts on the wave functions of the system, defined in the following

way:

Pψ(x1, x2) ≡ ψ(x2, x1) (11)

where with ψ(x2, x1) we mean a function where the role of the x1 and x2 coordinates

is swapped. To the operator P is associated an operator R that acts on the space of

configurations, and that swaps the coordinates:

 x2

x1

 = R

 x1

x2


 x2

x1

 =

 0 1

1 0

 x1

x2


The physical significance of PR is to produce from the wavefunction ψ of a state, the

wavefunction PRψ in which the role of the particles is interchanged: new coordinates

x′1, x
′
2 play the role of coordinates x1, x2.

7.2 more general case: multiple particles

(cfr. [WG59], section 2 pag 104)

(here more insight is needed, to understand why degenerate eigenvalues are mentioned.

cfr the book)

We can generalise the concept to a system of more than two particles, each of which

have more that one degree of freedom (here xi run over all the configurations space

coordinates):

− ~2

2m

(
d2

dx21
+

d2

dx22
+ · · ·

)
ψ(x1, x2, · · ·) + V (x1, x2, · · ·)ψ(x1, x2, · · ·) = E ψ(x1, x2, · · ·)
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and to any possible transformation on the space of configurations (here R must be an

orthogonal transformation):
x′1

x′2
...

x′n

 = R


x1

x2
...

xn

 . (12)

As before, we can define an operator PR that acts on the wave functions of the system

and is associated to R, in the following way:

PRψ(x′1, x
′
2, · · · , x′n) ≡ ψ(x2, x1, · · · , xn). (13)

Two points of the configurations space ~x and ~x′ that are transformed into one other

by R and it’s inverse R−1 have to represent the same physical state for the system (by

definition of identical particles.

*this implies* ⇒

ψ and PRψ also also represent two identical quantum states.

*this implies* ⇒

if ψχ is a non-degenerate eigenfunction with eigenvalue Eχ the same stationary Schrödinger

equation must hold for ψχ and PRψχ :

Hψχ = Eψχ (14)

HPRψχ = EχPRψχ (15)
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*this implies* ⇒

the hamiltonian of the system H is invariant under the action of the operator PR

*this implies* ⇒

all the possible transformations {R} and {PR} form two isomorphic groups. The “row

by column” multiplication for the matrices is the multiplication for the group {R}, while

for the operators {PR} [...] (caution, here the definition of the multiplication for the

operators is delicate, cfr [WG59] page 105 - 106)

(cfr. [WG59] section 1, 2, pag 102, 104)

7.3 linearity

(cfr. [WG59] section 3, pag 107)

Theorem 7.1 Operators PR are linear:

PR(a ψ1 + b ψ2) = aPRψ1 + bPRψ2 (16)

7.4 physical meaning of the invariance group of H

(cfr. [WG59] section 4, pag 107)

For the most part, the group {PR} of the hamiltonian of a quantum system can be

determined from general physical considerations.

In general, there are physical quantities (observables) from which point of view the state

ψ and the state PRψ are equivalent: the measurement of the observable gives the same

results with the same probabilities.

We say that the observable is symmetric under the transformation PR, and the group

of operators {PR} is called the the symmetry group of the observable .
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Definition 7.1 The group of the operators that interchange identical particles and plus

those that perform rotations of the coordinates reference that leave the system unchanged

is called the symmetry group (or invariance group) of the hamiltonian of a quantum

system.

7.5 general case of degenerate eigenvalues

Let be Eχ is a degenerate eigenvalue of l degeneracy. This means that there are l linearly

independent eigenfunctions

ϕi ∈ {ϕ1, ϕ2, · · · , ϕl} (17)

that form a basis for the eigenspace of degeneracy of Eχ, for which holds:

Hϕi = Eiϕi. (18)

If we apply an operator of symmetry PR to one of these eigenfunctions, this time the

fact that PRϕi has to describe “the same physical state” doesn’t mean that PRϕi is

proportional to ϕi (i.e. that PRϕi = κϕi). In this case PRϕi can be a linear combination

of the (17). If we call D(R)χν the coefficients of this linear combination, we have:

PR ϕν =
l∑

χ=1

D(R)χν︸ ︷︷ ︸
coefficient

ϕχ. (19)

With these definitions, the following theorem holds

Theorem 7.2 The coefficients defined in (19) form a representation {D(R)}R∈G of the

invariance group of the hamiltonian G of the system with dimension l.

Then if we apply a change of base in the eigenspace and move to another eigenbase with

a transformation, using a matrix α so that

ϕ′µ =
l∑

ν=1

ανµϕnu (20)
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it is possible to show that the new representation of the group G obtained from

∀R ∈ G,PRϕ′χ =
l∑

λ=1

D′(R)χλϕ
′
λ (21)

is another representation that is equivalent to the previous {D(R)}R∈G, where the simi-

larity transformation is the matrix α.

In other words, the following theorem holds:

Theorem 7.3 The representation of the group of invariance for the hamiltonian of a

system which belongs to a particular eigenvalue is uniquely determined up to a similarity

transformation

(cfr [WG59] section 6, pag110)

Moreover

Theorem 7.4 If we start from an orthogonal eigenbase, the particular representation

{D(R)}R∈G (obtained via (19)) is unitary.

(cfr [WG59] section 7, pag111)

wrap-up comment To each eigenvalue of the energy E it is associated a representa-

tion of the group of invariance of the system (group of symmetry for the hamiltonain

of the group). The dimension of the representation is equal to the degeneracy of the

eigenvalue.

8 Eigenfunctions and representations

(cfr [WG59] cap. 12 pag. 112)
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8.1 Functions belonging to rows of a representation

(cfr [WG59] cap.12, section 1 pag. 112)

Definition 8.1 Let D(j)(R) be an irreducible unitary representation of dimension lj of

the group of unitary operators PR, and let f
(j)
1 , f

(j)
2 , · · · , f (j)

lj
be lj wave functions for

which

PR f (j)
µ =

lj∑
λ=1

D(j)(R)λµ f
(j)
λ (µ ∈ {1, 2, · · · lj}) (22)

holds for all PR. A function f
(j)
χ is said to belong to the χ-th row of the irreducible repre-

sentation D(j)(R) if there exist lj−1 other “partner” functions {f (j)
1 , f

(j)
2 , · · · , f (j)

χ−1, f
(j)
χ+1, · · · , f

(j)
lj
}

such that all the fλ(j) satisfy (22).

Theorem 8.1 The relation:∑
R

D(j)(R)∗χχPR f (j)
χ =

h

lj
f (j)
χ (23)

is necessary and sufficient condition for a function f
(j)
χ to belong to the χ-th row of the

irreducible representation D(j)(R).

Theorem 8.2 a linear combination of functions that belong to the χ-th row of a repre-

sentation D(j) also belong to the same row of the same representation

(cfr [WG59] cap.12, section 2 pag. 113)

8.2 linear combinations functions belonging to rows of repre-

sentations

(cfr [WG59] cap.12, section 3 pag. 113)

Theorem 8.3 A generic function F of the hilbert space of the wavefunctions of the

system can be written as linear combination of functions belonging to rows of the same

representation, summing over the group’s elements and for each element, on the rows

of the representation
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8.3 Orthogonality of functions belonging to rows of irreducible

representations

(cfr [WG59] cap.12, section 4 pag. 115)

8.4 Operator that commutes with the operators of a symmetry

group

(cfr [WG59] cap.12, section 5 pag. 115)

8.5 Expansion of functions over characters of a symmetry group

(cfr [WG59] cap.12, section 6 pag. 117)

“The general theorems on functions stated here can be summarised by the following

statement:”

Theorem 8.4 Functions belonging to different irreducible representations or to differ-

ent rows of the same irreducible representation belong to different eigenvalues of some

hermitian operator. This operator commutes with all the operators of the symmetry

group

Theorem 8.5 one irreducible representation correspond to each eigenvalue, and one

row of an irreducible representation corresponds to each eigenfunction; the partners of

an eigenfunctions (different rows of the same irreducible representation) are the other

eigenfunctions belonging to the same degenerate eigenvalue

(cfr [WG59] cap.12, pag. 119)

Note - Very many eigenvalues will correspond to any given representation
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9 Symmetry, representations and perturbation the-

ory

(cfr [WG59] cap.12, section 8-12 pag. 120-123)

1 We can imagine the unperturbed hamiltonian having a certain symmetry group, and

the perturbation term to have a different (smaller) one. The lifting of symmetries leads to

removal of degeneracy: eigenfunctions that belong to the same irreducible representation

of the unperturbed symmetry group, belong to different irreducible representations of

the perturbed one.

2 the perturbation theory is about diagonalising the perturbation operator, i.e. solving

the eigenvalue problem for the perturbation operator.

9.1 Symmetric perturbation

(cfr [WG59] section 8 pag. 120)

Theorem 9.1 Under a symmetric perturbation, an eigenvalue with an irreducible rep-

resentation retains its representation, and there is no splitting

Theorem 9.2 Under a symmetric perturbation, an eigenvalue with a reducible repre-

sentation will be in general split in different eigenvalues. If the representation is reduced

into an irreducible representation with a1 occurrences of the D(1)(R) irreducible repre-

sentation, a2 occurrences of D(2)(R) and so forth, in the perturbed system there will be

a1 eigenvalues with irreducible representation D(1)(R), a2 with D(2)(R) and so forth.

These values will be in general different.
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A Appendix - Other theorems on representations

A.1 theor. on the dimensions of irreducible representations

Theorem A.1 The sum of the squares of the dimensions of all the inequivalent irre-

ducible representations of a group is equal to the order of the group.

(for the proof cfr appendix H)

A.2 theor. on equivalent representations

Theorem A.2 If the same similarity transformation is applied to all the matrices of a

representation, we obtain another representation, that is said to be equivalent.

Proof: If Γ′(A) = S−1Γ(A)S is the similarity transformation, then let’s show that the

transformed matrices have the same “group structure” (i.e. the product):

Γ′(A)Γ′(B) =
[
S−1Γ(A)S

] [
S−1Γ(B)S

]
= S−1Γ(A)SS−1Γ(B)S

= S−1Γ(A) I Γ(B)S

= S−1Γ(A)Γ(B)S

= S−1Γ(AB)S

= Γ′(AB)

A.3 theor. on unitary repr.

Theorem A.3 Any representation by matrices with nonvanishing determinants can be

transformed into a representation by unitary matrices through a similarity transforma-

tion ([WG59] theor. 1, pag. 74)

(this is a preparation for theorem 4.1)
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A.4 theor. on equivalent representations

Theorem A.4 If two repr. are unitary and equivalent (equivalent means that exist “a

matrix” of any form that transforms the one into the other) then the two repr. can be

transformed into one another by a unitary transf. ([WG59] theor. 1a, pag. 78)

(this is a preparation for theorem 4.1)

B Appendix - other theorems on characters

B.1 unicity of characters

Corollary B.1 Two inequivalent irreducible representations cannot have the same char-

acter. Irreducible representations with equal characters are equivalent.

B.2 characters and classes

Corollary B.2 In a given representation, elements of the same class have the same

character

Thus, in stating the set of characters for a representation it suffices to give the character

for one element of each class of the group. This can be considered the character of the

class.

B.3 reduction of a representation

Theorem B.3 The irreducible components of an irreducible representation are uniquely

determined (except for order). In other words, a reducible representation has an unique

set of irreducible representations that forms it.
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B.4 characters of reducible representations

Theorem B.4 The number of times an irreducible representation appears in the re-

duced form of a reducible representation is completely determined by the character of

the representation

Corollary B.5 Equality of the characters is necessary and sufficient condition for the

equivalence of two representations

C characters of the C3V group [Web10]

D Mulliken symbols

(cfr. [HB80] page 49 and 50)

E Direct product of groups [Wik10a]

In group theory one can define the direct product of two groups (G, ∗) and (H, o),

denoted by G × H. For abelian groups which are written additively, it may also be

called the direct sum of two groups, denoted by G⊕H.

It is defined as follows:

• as set of the elements of the new group, take the “cartesian product” of the sets

of elements of G and H, that is{(g, h) : g ∈ G, h ∈ H};

• on these elements put an operation, defined elementwise:

(g, h)× (g′, h′) = (g ∗ g′, h ◦ h′) (24)

(Note the operation * may be the same as ◦.)
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This construction gives a new group. It has a normal subgroup isomorphic to G (given

by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements

(1, h)).

The reverse also holds, there is the following recognition theorem: If a group K contains

two normal subgroups G and H, such that K = GH and the intersection of G and H

contains only the identity, then K = G×H. A relaxation of these conditions gives the

[[semidirect product]].

As an example, take as G and H two copies of the unique (up to isomorphisms) group of

order 2, C2: say {1, a} and{1, b}. Then C2 × C2 = {(1, 1), (1, b), (a, 1), (a, b)}, with the

operation element by element. For instance, (1, b)∗(a, 1) = (1∗a, b∗1) = (a, b), and(1, b)∗
(1, b) = (1, b2) = (1, 1).

With a direct product, we get some natural group homomorphisms for free: the projec-

tion maps π1:G×H → G by π1(g, h) = g, π2:G×H → H by π2(g, h) = h called

the ”’coordinate functions”’.

Also, every homomorphism f on the direct product is totally determined by its compo-

nent functions fi = πi ◦ f .

For any group (′′G′′, ∗), and any integer n ≥ 0, multiple application of the direct product

gives the group of all n-tuples Gn (for n = 0 the trivial group). Examples: Zn Rn (with

additional vector space structure this is called Euclidean space)

F Notation [Wik10b]

In geometry a point group in three dimensions is an isometry group in three dimensions

that leaves the origin fixed (correspondingly, an isometry group of a sphere).

It is a subgroup of the orthogonal group O(3), the group of all isometries which leave

the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a

subgroup of the Euclidean group E(3) of all isometries.

Symmetry groups of objects are isometry groups. Accordingly, analysis of isometry

groups is analysis of possible symmetries. All isometries of a bounded 3D object have
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one or more common fixed points. We choose the origin as one of them.

Symmetry groups of objects are isometry groups. Accordingly, analysis of isometry

groups is analysis of possible symmetries. All isometries of a bounded 3D object have

one or more common fixed points. We choose the origin as one of them. The symmetry

group of an object is sometimes also called full symmetry group, as opposed to its

rotation group or proper symmetry group, the intersection of its full symmetry group

and the rotation group SO(3) of the 3D space itself. The rotation group of an object is

equal to its full symmetry group if and only if the object is chiral.

F.1 List of symmetry operations

The operations of symmetry allowed for an object form a group, where the multiplication

is represented by the action of two operations taken one after the other.

Here we list the possible punctual symmetry operations (punctual = leave at least one

point non-moved. Non punctual (spatial) symmetry operations are translations.

symbol name description

E identity leave the object unchanged

σ reflection

Cn rotation rotate of an angle 2π/n around an axis

Sn improper rotation rotation of 2π/n followed by a reflection through

a plane perpendicular to the axis of rotation

i inversion map all points at the same distance but the other

side of the “inversion centre”, along their connecting line

The following holds:

S2 ≡ i.

F.1.1 number of rotation symmetries

theorem: the smallest angle of rotaional symmetry is 360/6, i.e he rotational series Cn

has 6 members, wih 1 ≤ n ≤ 6.
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proof

see solid state noes

G The point groups

Here is the list of all the possible point groups

(to be updated! - cfr [HB80] page 26)

Cn n-fold rotational symmetry cyclic symmetry

Cnh n-fold rotational symmetry cyclic symmetry

with an additional reflection symmetry plane

perpendicular to the rotation axis

(horizontal plane)

Cnv n-fold rotational symmetry cyclic symmetry

with additional reflection symmetry planes

containing the rotation axis

(vertical planes)

Dn n-fold rotational symmetry dihedralsymmetry

Dnh n-fold rotational symmetry dihedralsymmetry

with an additional reflection symmetry plane

perpendicular to the rotation axis

(horizontal plane)

Dnd n-fold rotational symmetry dihedralsymmetry

with additional reflection symmetry planes

containing the rotation axis

(vertical planes)

S2n n-fold rotational symmetry rotation and

with additional reflection symmetry planes inversion about the origin

containing the rotation axis (also called “improper rotation”)

(vertical planes)

http://en.wikipedia.org/wiki/Cyclic_symmetries
http://en.wikipedia.org/wiki/Cyclic_symmetries
http://en.wikipedia.org/wiki/Cyclic_symmetries
http://en.wikipedia.org/wiki/Dihedral_symmetry
http://en.wikipedia.org/wiki/Dihedral_symmetry
http://en.wikipedia.org/wiki/Dihedral_symmetry
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G.0.2 Example of a group

the identity, the rotation of 2π/3 (C3) and the rotation of 2π(2/3) (C3C3 = C2
3) form a

group. To describe the multiplication of this group, a table is used:

C3 E C3 C2
3

E E C3 C2
3

C3 C3 C2
3 E

C2
3 C2

3 C3 E

H proof of the theorem on the dimensions of irre-

ducible representations

(cfr A.1)

Statement - The sum of the squares of the dimensions of all the inequivalent irre-

ducible representations of a group is equal to the order of the group.

Proof - Let’s consider a representation of a group:

D(1)(E), D(1)(A2), · · · , D(1)(Ah)

If we fix two integers µ and ν smaller than the dimension l1 of the representation, we can

associate to each element of the group the µν element of the irreducible representation

D(1)(A1)µν = v
(µν)
A1

; D(1)(A2)µν = v
(µν)
A2

; · · · ; D(1)(Ah)µν = v
(µν)
Ah

where h is the order of the group.

In this way we can define l21 vectors of length h.

Theorem 4.2 means that every pair of these l21 vectors are orthogonal. Moreover, the

same theorem states that if we choose another inequivalent irreducible representation

D(2)(E), D(2)(A2), · · · , D(2)(Ah)
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of the same group, and we define

D(2)(A1)αβ = w
(αβ)
A1

; D(2)(A2)αβ = w
(αβ)
A2

; · · · ; D(2)(Ah)αβ = w
(αβ)
Ah

we have that all the l21 v vectors are orthogonal to all the l22 w. Note that vectors v and

w have the same length h, which is the order of the group.

Let’s now consider all the inequivalent irreducible representations of the same group,

each of which has dimensionality lj. Let their number be c. We can assume that all the

representations are unitary.

From theorem 4.1 we can write that:∑
R

√
lj
h
D(j)(R)µν

√
lj′

h
D(j′)(R)∗µ′ν′ = δjj′δµµ′δνν′

∀µ, ν ≤ lj; µ′ν ′ ≤ lj′ ; j, j′ ≤ c

 (25)

that means that the l21 + l22 + · · ·+ l2c h-dimensional vectors

v
(j)(µν)
R = [D(j)(R)]µν

are mutually orthogonal. Since the space of h dimension there can exist at most h

orthogonal vectors, it follows that l21 + l22 + · · ·+ l2c ≤ h.

It can be shown (omitted here) that the equality holds.

I Proof of theorem 7.2 (representation of eigenspace

of degeneracy)

Recap - G is the symmetry group of the hamiltonian of a system. Eχ is a degenerate

eigenvalue of l degeneracy, and ϕi ∈ {ϕ1, ϕ2, · · · , ϕl} is the eigenbase of the eigenspace of

degeneracy. Given R ∈ G we have that the transformed eigenfunction is not proportional

to the starting eigenfunction, but is still in the eigenspace (i.e. is a linear combination):

PR ϕν =
l∑

χ=1

D(R)χν︸ ︷︷ ︸
coefficient

ϕχ.
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The theorem states: The coefficients of the linear combination form a representation

{D(R)}R∈G of G with dimension l.

Let’s consider another operator of the symmetry group PS with S ∈ G, for which holds

PSϕχ =
l∑

λ=1

D(S)λχϕλ (26)

If we apply PS to both sides of (19):

PSPRϕν = PS

l∑
χ=1

D(R)χνϕχ

=
l∑

χ=1

D(R)χνPSϕχ (PS is linear)

=
l∑

χ=1

D(R)χν

l∑
λ=1

D(R)λχϕλ (we have expanded PSϕχ)

[...] to be continued, cfr [WG59] pag 109
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