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Quantum Information Theory

Classical Information Theory

Hilbert space Qubit Pure states & mixed states

pure states

mixed state

possible
states probabilities;

Quantum complementarity

POVMs probabilities;

Entropy (binary variable)

Holevo theorem
Suppose Alice prepares a state     where                                       with probabilities                       .
Bob performs a measurement described by POVM                          on that state, with measurement outcome Y.
For any such measurement Bob may do:

where                         . The equality holds in the case the                           are all orthogonal. 

( )

No-cloning theorem
Given two states, non parallel (distinct) and non orthogonal (not perfectly distinguishable), if we are given one of the two, but we 
don’t know which one, then there is no unitary operation which starts with two systems (the “original” and the “copy”), the first in the 
unknown state and the second in an initial known state, and ends with both in the unknown state 

orig. orig.copy copy

(Nielsen, Chuang - Quantum Computation and Quantum Information (2001))

Random variable

(possible outcomes)

(variable)

(probabilities)
• information content 
maximal for equiprobable 
distribution (see plot of 
binary entropy in the ex-
ample on the left)

• joint probability of in-
dependent variables is 
the product:

• intuition: information 
content is additive:

Insights

• information content 
is function of the prob-
ability only:

Information content
(single outcome)

Entropy
(info. content of whole variable)

Shannon’s Source coding theorem
N i.i.d. random variables each with entropy H(X) can be compressed into more than 
NH(X) bits with negligible risk of information loss, as N           ;
conversely if they are compressed into fewer than NH(X) bits is is virtually certain 
that information will be lost.  (Mackay - Information Theory, Inference, and Learning Algorithms (2003))

Other definitions

joint 
probability

joint 
entropy

mutual
information

Example
(tomorrow’s weather) - vs -

(not informative)

(informative)

(binary variable)
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• without loss of generality, we can 
assume that the initial state of the BH is 
a pure state

• at the end of the evaporation, only 
the Hawking radiation remains, 
which is in a mixed state

• Quantum Mechanics describes the evo-
lution of isolated systems as the action 
of an unitary operator

• Since no unitary operator can trans-
form a pure state into a mixed state, this 
leads to a paradox

• it is possible to re-formulate the para-
dox in terms of information: the totally 
mixed final state is the quantum analog 
of the classical equiprobable distribu-
tion. This state shares no information 
with the initial state: the outcome of an 
observation of the final state has no 
mutual information with the initial state. 
Where is the missing information? 

The paradoxHawking radiation
• due to vacuum fluctuations 
couples of particle-
antiparticle are continuously 
 created and annihilate

• if one of the two particles 
falls inside the event horizon, 
the other escapes

• the Hawking radiation de-
creases the energy of the BH, 
and eventually leads to its 
complete evaporation

• the Hawking is emitted in a  
totally mixed state
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• if we assume that somehow the initial information escapes 
the BH, this implies the breaking of the no-cloning theorem

• indeed, from the point of view of the in-falling observer, 
crossing the event horizon has no physical effects. So, it is 
safe to assume that after the crossing the information is 
intact.

• if on the other hand we assume that the same information 
canalso escape the event horizon, this implies that the infor-
mation is cloned! 

Black Hole complementarity
• a possible solution to the clon-
ing paradox is the idea that the 
two copies of the information 
are actually encoded in two 
complementary bases.

• So, although there exist two 
copies of the same informa-
tion, they are never accessible 
at the same time, or for the 
same observer
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Description of RG

(group operator  action)

Callan-Symanzik 
equation

• The dynamics of a composite system can be described by the inter-
actions between its components. At a certain scale (graining)      the 
elementary components are defined, and the interaction constant g 
between them. At an higher scale (more coarse graining)     , the 
elementary components can be “clusters” (blocs) of elementary com-
ponents at the finer scale. At the higher scale the interacting constant 
is in principle changed. So in general we have an interaction constant 
which is function of the scale:         .

where:
m  is the mass
C   is the correlation function between the                        elements of the system
  ,     are two functions that “compensate” the effect of the scale change, in order for the description (i.e. the correlation 
function) at the different scales to be consistent. In particular,   captures the change the change of the cou- pling con-
stant, while    captures the change of the field itself.

• The relationship between the group operator     and the interaction constant is described by the Callan-Symanzik 
equation, which enforces the consistency between the descriptions at different scales:

• The main idea of the Renormalization Group (RG) is to define an operator     
which applied to the interaction constant at the smaller scale:

Information flow
• In 1986 Zamolodchikov (see bibliography) proves 
that (in a 2D case) it is always possible to define a 
function, the c-function, which monotonically de-
creases under the action of the RG operator. 

• Because of this monotonicity, it is possible to 
give to this function the meaning of “informa-
tion flow” along the group transformation.

• This also gives rise to irreversibility 
under the group transformations: the 
group is not formally a group because 
there for each operator there is no 
inverse.

• This irreversibility captures the notion 
that despite the consistency, in the de-
scription at a coarse grained scale some 
information about the description at a 
finer scale has been lost.

• What we have seen shows how Infor-
mation Theory is an ideal tool to use for 
future research within the framework of 
RG.
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