An introduction to Information Theory and some of its applications:

Université \quad n
de Montréal Black Hole Information Paradox and Renormalization Group Information Flow

Fabio Grazioso - Univesrsité de Montréal - Laboratoir d'Informatique Théorique et Quantique

Random variable $\begin{aligned} & x \quad(\text { variable }) \\ & \mathcal{A}_{X} \equiv\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\ & \mathcal{P}_{X} \equiv\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \end{aligned}$	$X \equiv\left(x, \mathcal{A}_{X}, \mathcal{P}_{X}\right)$ (possible outcomes) (probabilities)
Information content (single outcome) $h\left(x=a_{i}\right) \equiv \log \frac{1}{p_{i}}$	Entropy (info. content of whole variable) $H(X) \equiv \sum_{i} p_{i} \log \frac{1}{p_{i}}$

Shannon's Source coding theorem

Vi.i.d. random variables each with entropy $\mathrm{H}(\mathrm{X})$ can be compressed into more than $\mathrm{NH}(\mathrm{X})$ bits with negligible risk of information loss, as $\mathrm{N} \rightarrow \infty$
conversely if they are compressed into fewer than $\mathrm{NH}(\mathrm{X})$ bits is is virtually certain

Insights		
- information content is function of the probability only:	$\begin{gathered} \Rightarrow \quad \begin{array}{l} h(x)= \\ =\log [f(p)] \end{array} \left\lvert\, \begin{array}{l} \bullet \text { information content } \\ \text { maximal for equiprobable } \\ \text { distribution (see plot of } \\ \text { binary entropy in the ex- } \\ \text { ample on the left) } \end{array}\right. \\ \Downarrow \\ h\left(x=a_{i}\right)=\log \frac{1}{p_{i}} \end{gathered}$	
$h(x)=h[p(x)]$		
- joint probability of independent variables is the product:		
$p(x, y)=p(x) p(y)$		
- intuition: information content is additive:		
$h(x, y)=h(x)+h(y)$		

Quantum Information Theory

		Quantum Information Theory
Hilbert space $\begin{aligned} & \mathcal{H}=\operatorname{span}\{\|1\rangle, \ldots,\|n\rangle, \ldots\} \\ & \|\psi\rangle=c_{1}\|1\rangle+\ldots+c_{n}\|n\rangle+\ldots \\ & \forall i, c_{i} \in \mathbb{C} \end{aligned}$	Qubit $\begin{aligned} & \mathcal{H}=\operatorname{span}\{\|0\rangle,\|1\rangle\} \\ & \|\psi\rangle=c_{0}\|0\rangle+c_{1}\|1\rangle \end{aligned}$	Pure states \& mixed states $\left.\begin{array}{l} \rho_{0} \equiv\|0\rangle\langle 0\|=\binom{1}{0}(1,0)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right) \\ \rho_{\psi} \equiv\|\psi\rangle\langle\psi\|=\binom{c_{0}}{c_{1}}\left(c_{0}^{*}, c_{1}^{*}\right)=\left(\begin{array}{ll} c_{0} c_{0}^{*} & c_{0} c_{1}^{*} \\ c_{1} c_{0}^{*} & c_{1} c_{1}^{*} \end{array}\right) \end{array}\right\} \text { pure states }$
Quantum complementarity	 probabilities $\begin{aligned} & \left\{p_{0}=1, p_{1}=0\right\} \\ & \left\{p_{+}=0.5, p_{-}=0.5\right\} \end{aligned}$	$\left\{\left\|\psi_{1}\right\rangle, \ldots,\left\|\psi_{n}\right\rangle\right\} \underset{\text { states }}{\text { possible }} ;\left\{p_{1}, \ldots, p_{n}\right\}$ probabilities $\rho=\sum_{i} p_{i} \rho_{i}=\sum_{i} p_{i}\left\|\psi_{i}\right\rangle\left\langle\psi_{i}\right\| \quad$ mixed state

Holevo theorem

Suppose Alice prepares a state ρ_{x} where $X=\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{n}\right\rangle\right\}$ with probabilities $\left\{p_{1}, \ldots, p_{n}\right\}$.
Bob performs a measurement described by POVM $\left\{\hat{P}_{1}, \ldots P_{2}\right\}$ on that state, with measureme Bob performs a measurement described by POVM $\left\{P_{1}, \quad \hat{P}_{n}\right\}$ on that state, with measurement outcome Y For any such measurement Bob may do:

$$
I(X: Y) \leq S(\rho)-\sum_{x} p_{x} S\left(\rho_{x}\right)(\leq H(X))
$$

where $\rho=\sum p_{x} \rho_{x}$. The equality holds in the case the $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{n}\right\rangle\right\}$ are all orthogonal.

No-cloning theorem

$\left\{\left\|\psi_{1}\right\rangle,\left\|\psi_{2}\right\rangle\right\}$	
$0<\left\|\left\langle\psi_{1} \mid \psi_{2}\right\rangle\right\|<1$	$\hat{U}\left(\left\|\psi_{i}\right\rangle\|0\rangle\right)$
- org. copy	$\left\langle\psi_{i}\right\rangle\left\|\psi_{i}\right\rangle$
orig. cepy	

Black Hole Information Paradox

Black Hole complementarity
 two copies of the intormatio
are antill encod in wo
complementary bases. - So although hhere exist two
copies of the sane informa-
 at the same time,
same observer

Hawking, "Particle creation by black holes", Comm. math. phys., 43, 199 (1975)
Bekenstein, "Black holes and the second law", Lett. Nuovo Cimento, 4, 737 (1972)

Renormalization Group Information Flux	
Description of RG - The dynamics of a composite system can be described by the interactions between its components. At a certain scale (graining) μ_{1} the elementary components sare defined, and the interaction constant g between them. At an higher scale (more coarse graining) μ_{2}, the elementary components can be "clusters" (blocs) of elementary com- ponents at the finer scale. At the higher scale the interacting constant is in principle changed. So in general we have an interaction constant which is function of the scale: $g\left(\mu_{i}\right)$. - The main idea of the Renormalization Group (RG) is to define an operator \hat{G} which applied to the interaction constant at the smaller scale: $g\left(\mu_{2}\right)=\hat{G} g\left(\mu_{1}\right) \quad$ (group operator action) - The relationship between the group operator \hat{G} and the interaction constant is described by the Callan-Symanzik equation, which enforces the consistency between the descriptions at different scales: $\left[m \frac{\partial}{\partial m}+\beta(g) \frac{\partial}{\partial g}+n \gamma\right] C^{(n)}\left(x_{1}, \ldots, x_{n} ; m, g\right)=0$ Callan-Symanzik equation where C is the correlation function between the $\left(x_{1}, \ldots, x_{n}\right)$ elements of the system β, γ are two functions that "compensate" the effect of the scale change, in order for the description (i.e. the correlation function) at the different scales to be consistent. In p stant, while γ captures the change of the field itself.	Information flow - In 1986 Zamolodchikov (see bibliography) proves that (in a 2D case) it is always possible to define a creases under the action of the RG operator. - Because of this monotonicity, it is possible to give to this function the meaning of "inform tion flow" along the group transformation. - This also gives rise to irreversibility under the group transformations: the group is not formally a group because there for each operator there is no \qquad that despite the consistency, in the description at a coarse grained scale some finer scale has been lost. \qquad mation Theory is an ideal tool to use for $c\left[g\left(\mu_{1}\right)\right] \leq c\left[g\left(\mu_{2}\right)\right]$ RG.
Bibliography: Zamolodchikov, ""Irreversibility" of the Flux of the Renormalization Group in a 2D Field Theory", JET Preskill, "Quantum information and physics: some future directions", Journal of Modern Optics, 47, 127, Apenko, Information theory and renormalization group flows, Physica A, 391, 62 (2012) Osborne, M A Nielsen, "Entanglement, quantum phase transitions, and density matrix renormalization", Qua Horacio Casini, Marina Huerta, "A c-theorem for entanglement entropy", Journal of Physics A, 40, 7031 (2007)	formation Processing, 1, 45 (2002)

Renormalization Group Information Flux

Bibliography: "IIrreversibility" of the Flux of the Renormalization Group in a 2D Field Theory", JETP lett, 43, 730 (1986)
Zamolodchikov,

Apenko, Information theory and renormalization group flows, Physica A , 391,
Osborne, M
Osborne, M A A Nielsen, "Entanglement, quantum phase transitions, and density matrix renormalization", Quantuun
Horacio Casini, Marina Huerta, "A c-theorem for entanglement entropy", Journal of Physics A, 40, 7031 (2007)

