
An introduction to Artificial Intelligence and Deep Learning

Fabio Grazioso∗

1) Microfiltration Processes Laboratory, WCRC “Advanced Digital Technologies”,
Tyumen State University, Volodarskogo 6, Tyumen, 625003, Russia;

2) Photonics and Microfluidics Lab, Tyumen State University, Volodarskogo 6, Tyumen, 625003, Russia;
3) Tyumen State Medical University, Odesskaya 54, Tyumen, 625023, Russia.

(Dated: November 20, 2022)

The present work introduces the main concepts from the research on Artificial Neural Networks
(ANNs) which represent the most promising model to realize artificial intelligence. We will see how
historically the main ideas have been developed, the periods of great development of the neural
computational paradigm and its long period of oblivion. We will describe the main features of an
ANN discussing in some detail an example of an application to optical characters recognition. We
will follow how the technique of backpropagation, although a mere technical tool, has made possible
the use of more powerful networks, bringing the times of computation down to acceptable values for
practical applications. We will also describe in some details the more advanced and recent model of
ANN, the Convolutional Neural Network.

CONTENTS

I. Introduction 1
A. Machine Learning 2
B. The recognition/classification problems 2
C. Deep Learning 2

II. Artificial Neural Networks 2
A. The perceptron - the neuron 2
B. The XOR gate and the network 3

III. Optical Characters Recognition (OCR) 4

IV. The training 4
A. The Cost Function 5
B. Minimization and gradient descent 5

1. Gradient descent 6

V. Backpropagation 6
A. Details of backpropagation 7

VI. Convolutional Neural Networks 7
A. Feature maps and pooling layers 8

VII. Conclusions 8

References 9

I. INTRODUCTION

Since the term Artificial Intelligence (AI), has become
part of popular culture, it may have become too wide to
be used in a scientific context.

In general we may say that AI refers to the study of cog-
nitive capabilities shown by man-made artifacts. Those
capabilities can be divided in the following categories:

∗ f.grazioso@utmn.ru

(a) the ability to learn new behaviours, not previously
programmed in its design, (b) the ability for proactive
interaction with an unknown environment, (c) the abil-
ity to infer and deduce new information.
A very limited list of the application fields can be: com-

puter vision, speech recognition, problem solving, knowl-
edge representation.
The implicit definition of AI on which the above state-

ments are made is the Strong AI, as defined by Searle
[1, 2]. In extreme summary, this definition of AI says that
the artificial device that shows cognitive capabilities, is
therefore assumed to have cognitive states, intelligence,
self-awareness, or consciousness. This can be related to
the Turing test [3] .
Among several authors who wrote critically on the sub-

ject of strong AI we can mention Roger Penrose [4]
The quest for an “intelligent artificial device” can be

traced very far back in time, as back as the mentions to
intelligent machines found in the bible, or in the greek
mythology.
In the modern development of this scientific endeavour,

there has been a time, between the two world wars, when
two approaches have been compared to each other.
On one side, there was the idea of mimicking the struc-

tures that the research in biology and anatomy was dis-
covering inside the brain and the nervous systems.
This approach may dated back 1943, with the seminal

article by Mc Culloch and Pitts [5].
At the same time, another approach was being devel-

oped, relying on a much more abstract model, and on
the idea of algorithm. A powerful thrust to this idea of
the algorithmic approach to intelligence was coming from
the famous entscheidungsproblem, the “decision prob-
lem” formalized by Hilbert in 1928 [6]. This problem can
be loosely described as whether it is possible or not to
decide automatically about the truth or falseness of any
possible statement of formal logic. Turing, and Church,
independently tackled the problem, by first giving a pre-
cise definition of “automatic decision”, i.e. a precise def-
inition of algorithm [7, 8].

mailto:f.grazioso@utmn.ru

2

To trace the history of those two approaches is com-
plex, and the von Neumann symbolic and algorithmic ap-
proach has gained the upper hand for a long period. The
other approach, the neural approach, also called connec-
tivistic, has gone through a long period of oblivion after
the appearance of the work of Minsky and Papert, who
formalized and made it systematic, but also made explicit
its limits [9].

The research on perceptron - artificial neuron gave
promising results, and a lively debate between the two
approaches, the neural, connectionist, and the algorith-
mic, symbolic.

A recent historical review of the research on artificial
intelligence can be found in [10], while a good account of
the developments of AI, and most of its sub-fields can be
found in the review book by Russel et al. [11].

A. Machine Learning

Machine Learning (ML) is a more precisely defined
and very active field of research. Wether ML is the re-
search that will realize the paradigm of strong AI or not,
it is anyways a well defined scientific field of research,
with its formalized definitions, and a very active commu-
nity of scientists developing more and more solutions and
achievements.

The goal of ML is to create a system or device which is
capable of developing new abilities, not by means of pre-
programmed instructions for specific tasks, but rather
extracting that from sets of data presented to it. In other
words, the key idea of ML is to extract information from
data input, and to be able to make predictions about
future data [12].

The three main paradigms used in ML are: supervised
learning, unsupervised learning and reinforcement learn-
ing. In supervised learning, the system is fed with some
good-quality input data, along with the correct, desired
output. With the right feedback mechanism the goal is
to learn from those training examples, so that useful and
new predictions can be extrapolated, for new data not
yet presented.

In the unsupervised learning, the system is presented
only with input data, without information about the cor-
rect output. The most meaningful application of this
model is where an obvious structure is present in the
data, e.g. some grouping, and the goal is to find this
meaningful structure.

In the reinforcement learning, the system acts as an
agent interacting with the environment and learning
what are the behaviours that generate rewards.

B. The recognition/classification problems

Among the several fields of application of ML, we will
focus on the recognition problems, also called classifica-

tion problems, where the highest potential of this disci-
pline has been shown.
This type of problems consist in processing a set of

input elements, each belonging to one out of a list of
groups or categories, with the task to correctly recognize
the category of each element.

C. Deep Learning

Let’s observe that to simulate the XOR gate a single
neuron is not complex enough, and we have accomplished
that more complex task by creating a more complex net-
work, with extra layers.
This suggests that the more difficult and meaningful

applications will require more and more complex net-
works. As the size of the network, and the number of
parameters to be chosen grow, the choice of their opti-
mal values can not be done in an inductive and direct
way, and a different approach must be found.

II. ARTIFICIAL NEURAL NETWORKS

The Artificial Neural Networks (ANN) represent one of
the possible models used to engineer Machine Learning.
It is not the only one, and to give few examples of other
models we can mention: Decision trees, Bayesian net-
works, Genetic algorithms and Support vector machines.
The ANN is an abstract model, and in theory it can

be realized and implemented in different ways, using e.g.
hardware electronic components, software components,
and in principle even mechanical components or other
technological implementations. The most common way
to implement ANNs is using computer code.
A good account of the developments of ANN can be

found in the review book by Russel et al. [11], or in the
monograph by Fausett [13] or that by Gupta et al. [14],
just to mention a few.
In designing this model, only some aspects of the bio-

logical neural system are used, and the precise replication
of all the biological characteristics is not the most impor-
tant goal. To draw an analogy, in designing flying ma-
chines humans have definitely taken some fundamental
ideas from the observation of birds; however, in pursuing
the goal of an efficient flying device, some important dif-
ferences and deviations from the biological design (flap-
ping wings) have been of fundamental importance.

A. The perceptron - the neuron

The central concept of ANN is the artificial neuron.
This can be traced back to the concept of perceptron, as
introduced in the early studies on AI and ML [5, 15].
The perceptron wants to model a biological neuron,

and in the following we will use the term artificial neuron,
or just neuron. An artificial neuron is an object that can

3

accept several quantitative inputs {xj}; to each input the
neuron applies a weighting factor, and then it computes
the sum of the inputs (weighted sum)

∑
j wjxj , it adds a

bias b and then, depending on the sign of this expression
the perceptron will have an output or not :

output =

{
0 if

∑
j xjwj + b ≤ 0

1 if
∑

j xjwj + b > 0 .
(1)

This behaviour of an “all or nothing” output of a neu-
ron is based on what it is observed in biological neurons,
which are either inactive, or “fire” an output electric sig-
nal.

If the neuron is defined like this, it has a linear response
with respect to the inputs. It is much more useful to
have neurons with a nonlinear behaviour, and to obtain
this we need to feed the quantity z =

∑
j xjwj + b to a

nonlinear function f(z), called activation function:

output =

{
0 if f(z) ≤ 0
1 if f(z) > 0 .

(2)

Here we have started to use the formalism of linear
algebra, defining the input vector x⃗ = {xj} and the
weights vector w⃗ = {xj}, and using the scalar product
x⃗ · w⃗ =

∑
j wjxj . The most used activation function is

the sigmoid, that is slowly changing for high or small
input values but very steep for the mid input values:

σ(z) ≡ 1

1 + e−z
(3)

which is plotted in fig. 1(b).

B. The XOR gate and the network

The research on perceptron - artificial neuron gave
promising results, even using just a single neuron, or with
several neurons connected in a network, Artificial Neuron
Network.
The network is created by some directed connections

i.e. connection with a defined direction (from transmit-
ting toward receiving neuron(s)), so that the output of a
neuron becomes one of the inputs of another neuron.

Since the algorithmic model and the neural model have
the same goal of computation, it is reasonable that one
model should “simulate” elements of the other model.

A logic gate is an abstract object with some logical in-
put states and some logical output states, which is one of
the building blocks of the symbolic-algorithmic approach
to computation.

In particular, an XOR logic gate (exclusive-OR) is a
gate with two logic inputs and one logic output, where
the output is true only if one input or the other is true,
but only in this case: if both the inputs are true, the
output will be false (i.e. this input is excluded). This

(a) Schematics of a single neuron, where the main elements are
reported: the multiple inputs, the weights, the activation

function, the threshold. Image taken from [14].

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
input

0.0

0.2

0.4

0.6

0.8

1.0

ou
tp

ut

f(x) = 1
1 + e x

sigmoid activation function

(b) Sigmoid activation function. The main characteristics of this
activation function are the tails on the left and on the right, and
the central slope: this shape provides for the non-linearity. For

the sigmoid the range of output values goes from 0 to 1.

Figure 1. The artificial neuron

can be described by the truth table (the table with all
the possible inputs and corresponding outputs) reported
in table I.
It is possible to prove that a single perceptron is unable

to implement the behaviour of the “XOR” logic gate.

Table I. Truth table of XOR logic gate: the output is true
only if one of the two inputs (but not both) are true.

input X1 input X2 output

false false false

true false true

false true true

true true false

It can be proven that to implement this behaviour with
a neural network the only way is to use an hidden layer
i.e. a group of neurons that are connected only with other
neurons, and are not directly connected with either the

4

X2

X1
Y1

Y2

O

0, 1
w11 = 2

th= 2

th= 2

th= 2

w1 = 2

w2 = 2

w22 = 2

w21 = -1

w12 = -1

0, 1

Figure 2. Schematic of a possible implementation of the XOR
logic gate, using an ANN with one hidden layer. Details of
the numerical values are discussed in the text (see also [13])

inputs of the whole network, or its output.
In fig. 2 we have an example of an ANN that imple-

ments the XOR logic gate, which follows one of the early
and simpler approaches [5]. In this implementation the
logic values of “true” and “false” have been mapped as
false = 0 and true = 1.

The weights are shown in fig. 2 on the links between
neurons. This set of values for the weights may have been
computed via the training process described above. The
thresholds for the two neurons of the hidden layer, and
the output neuron are written inside the neurons, and are
all set as t = 2. Finally, the activation function chosen
for all the neurons in the identity function. This choice
for the activation function means that the weighted sum
value is directly passed to the output, if it is above the
threshold. In fig. 2, below the input neurons we have also
written the possible inputs.

If we manually perform all the computations, compute
the input values for the intermediate neurons and the
output, for all the possible inputs, we can check that
indeed this ANN implements the behaviour of an XOR
logic gate.

III. OPTICAL CHARACTERS RECOGNITION
(OCR)

A more realistic example of a classification problem
(see section IB) is that of Optical Characters Recogni-
tion (OCR).

In this task the input is a set of images of handwrit-
ten or typed letters. To describe in details this problem,
and how to implement a neural network to solve it, let’s
consider digital images as grids of greyscale pixels, and
let’s consider to fix the size and resolution of the images.
Therefore, the input is a vector of the greyscale values
of all the pixels of the input image, and in our imple-
mentation we will map each pixel to one input neuron,
encoding the pixel greyscale value as a numerical value
from 0 (white) to 1 (black).

In fig. 3 we have an example of such image.

1
1

m

n

(n, m)

Figure 3. Here is an example of a handwritten character, in
particular this is the digit “8”. We can number each element
of the grid (pixel) with an index, and then a numerical value
will express the grey level if the pixel, from white to black.

The task for our ANN is to correctly recognize for each
image the corresponding letter or numerical digit that it
represents. So, for the OCR the output layer will con-
sist of a number of output neurons equal to the number
of symbols that we want to recognize. If we want to
recognize only numerical digits we will have 10 symbols,
whereas if we want to recognize alphanumeric characters
we will have 26 + 10 = 36 possible outputs, or (26 * 2) +
10 = 62 if we want to consider uppercase and lowercase
letters.
In fig. 4 we report a summarized sketch of this ANN.

IV. THE TRAINING

The most interesting feature of neural computing is the
ability it has to learn. In the supervised training model
this is done by presenting the system with several inputs,
for which the correct output is known, and then iterating
several cycles of input → adjustment of the parameters
(weights, bias, threshold) → measurement of some quan-
titative distance between the obtained output and the
correct output. A method to understand how to change
the parameters in an efficient way, in order to minimize
the quantitative distance, on the whole set of training
inputs is then needed. Once the system is trained well
enough, the parameters are “frozen”, and the system will
be used to respond and give outputs for new, unknown
inputs.
For relatively small ANNs the choice of its parameters

(weights, biases, and thresholds) can also be done using
some ad hoc criteria and some thinking, as we have seen
in the XOR gate simulation.
But in more complex (and powerful) ANNs (as seen for

the OCR) the number of connections, and therefore the
number of weights and biases grows exponentially with

5

...

1, 1

1, n

i, j

...
...

...
...

...

...
...

...

...

...
...

n, m

X1

Xi “z”

Xj “8”

Xk

Y1

Yi

Yj

Yl “ ”

“A”

0

1

0

0...

...

...

...

Figure 4. This can be a schematic example of an ANN designed to perform the optical character recognition (OCR) task.
In input we have the (n,m) pixels of the character figure, as discussed in the caption of fig. 3. In this figure the number of
hidden layers is undetermined. As discussed in section IC the number of hidden layers depends on the approach chosen. The
output neurons are as many as the possible characters (e.g. the 26 × 2 letters of the english alphabet, uppercase and lowercase,
plus the 10 numeric digits). On the right of the image we have shown the output values in an ideal case, where all the output
neurons have an output of 0, except for one, that has the output value of 1. This is an ideal case. A more realistic, but still
“good” output is one where all the output neurons have a very small numerical output, except for one that has an high output
value.

the size (depth), so that a more efficient and systematic
approach is needed.

A. The Cost Function

A key element for the training process is the cost func-
tion, also known as loss function. This is a function of
all the weights from each connection of the network, and
all the biases from each neuron.

We want to use the formalism of linear algebra to work
on this function, in this and the following sections.

To describe the details of the training process, and in
the following sections, we will use the OCR as a working
example.

Expanding on the formalism introduced for the single
neurons in eq. (2) we will represent an input as a vector,
let’s call it x, of dimension n, equal to the total number
of pixel in a character image.

The correct output will also be represented by a vector,
let’s call it y, with a number of elements m, which is
the number of symbols we are going to recognize. The
values of the elements of the correct output vector will be
all zero, except for the one corresponding to the correct
symbol, which will be one.

Then, also the network parameters (weights and bi-

ases) will be represented in vectors: w⃗ and b⃗. The number

of elements in those vectors will depend on the topology
of the network, i.e. the total number of connections, and
the total number of neurons respectively.
Once defined all the vectors, we can define a convenient

cost function, the function that quantitatively measures
how “wrong” is a certain choice of the parameters, assess-
ing how different are the obtained outputs, also averaging
over all the inputs in the training set:

C(w⃗, b⃗) ≡ 1

2n

∑
x

|y⃗(x⃗)− a⃗(w⃗, b⃗)|2 (4)

where y⃗ is the vector of the output values, which is a

function of all the network parameters w⃗ and b⃗, and has
the same dimension (number of elements) of the vector
of correct outputs y⃗, which depends only on the inputs
vector.

|y − a|2 =
∑
j

(yj − aj)
2 (5)

[16]

B. Minimization and gradient descent

Once we have set the notation, we can face the task of
finding the best choice of weights and biases with a more

6

systematic and efficient approach.
We can use mathematics, in particular calculus, and

see the problem as a minimization problem (also known
as optimization problem): we have to find the minimum
of a function of multiple variables.

However, here we face a big “bottleneck” problem, a
problem that maybe was the reason for the long period
in which the ANN have been neglected by the best part
of computer science research.

The problem is that the number of weights and biases
of a network of meaningful dimensions grows exponen-
tially, so much so that the problem of minimization be-
comes intractable with analytical mathematical methods.

In this section we will see a first standard approach to
the mathematical problem.

In the later sections we will see more recent methods
and techniques, that are more and more efficient, and
allow for a speedup of the minimization process.

Those speedups are not just improvements, but a
game-changer, which made possible to use ANN for real-
life problems, ANNs which have a high number of layers,
and therefore a very high number of weights and biases.
Making possible to train such deep ANNs brought this
research field back to life, and gave it the popularity that
it has nowadays.

1. Gradient descent

The general technique to use for the minimization of a
multiple variables function is the gradient descent. It is a
standard minimization procedure which starts choosing
an initial set of values for the variables (all the weights
and biases), and then the gradient of the function is used,
to find the “direction”, in the space of the variables along
which there is the strongest change in the function. The
gradient in turn consists of all the partial derivatives of
the function with respect to all the free parameters: given
a function f(ν1, . . . , νn) of n variables, the gradient of the
function is a n-dimensional vector defined as

∇f ≡
(

∂f

∂ν1
, . . . ,

∂f

∂νn

)
(6)

with the property that the scalar product of this vector
times any vector ν⃗ in the n-dimensional vector space of
the f(ν1, . . . , νn) variables, gives the directional deriva-
tive of the function along that direction:

∇f(ν⃗∗) · v⃗ = Dv⃗f(ν⃗
∗) (7)

where ν⃗∗ is a fixed set of values for the parameters
(ν∗1 , . . . , ν

∗
n) and v⃗ (v1, . . . , vn) is a direction in the same

space.
So, the gradient is used in the gradient descent proce-

dure as a tool to find the direction with the most rapid
decrease of the value of the cost function, seen mathe-
matically as a multivariable function.

It is useful to give an intuitive and visual description
of this procedure.
Imagine the function is a function of only two variables,

represented on a (x, y) cartesian plane, and the value of
the function is represented on the third z axis (see fig. 5).
Choosing a value for the parameters corresponds to a
choice of a starting point on the plane. Then, the gra-
dient is a mathematical tool that expresses the amount
of change (the first derivative) of the function in a given
direction. So, if we compute the partial derivatives, and
with them the gradient, and once we fix a position in the
plane, and a direction, we know how much the function
is changing in that direction. If we look at fig. 5, we
can imagine to fix a position, as a starting position, then
compute the gradient, and look for the direction toward
which the cost function is decreasing the most (minimum
negative gradient). We will then move of a certain small
amount the parameters along that direction, and repeat
the procedure. In this way, we should follow a path of
descent, toward a minimum of the function.
Remember that the cost function is an average over all

the inputs in the training set.

Figure 5. The gradient descent visualized for the two dimen-
sional case. The yellow dashed line represents a path that
reaches the minimum.

V. BACKPROPAGATION

Since the power of an ANN depends on the number
of neurons, of hidden layers, and of connections, the di-
mension of the parameters space of a powerful ANN may
become so big that the procedure described for the gradi-
ent descent in the previous section, and in particular the
computation of the gradient of the cost function, with
all the partial derivatives with respect to all the weights
and biases, is not computable, following the definitions of
computability elaborated by complexity theory [17, 18].
The ability to find an efficient way to compute the

gradient, and in general to minimize the cost function,

7

may represent not just an improvement, but it can make
the difference between doable and not doable.

Indeed, one of the breakthroughs of ANN research has
been such a technique, called backpropagation, which is
an efficient and systematic method to compute the gra-
dient of the cost function.

The backpropagation has been devised, in slightly dif-
ferent forms, since the ’70s, but its power has been un-
derestimated until the mid ’80s.

A. Details of backpropagation

The goal of backpropagation is to have a more effi-
cient way to compute the gradient of the cost function
in eq. (4), and in particular to compute all its partial
derivatives, with respect to all the weights and biases.

In essence, the backpropagation consists in “unpack-
ing” the dependence of the cost function on the weights
and biases, breaking this dependance “layer-by-layer”.

Let’s look at fig. 4, and eq. (4) and let’s follow the
process.

Let’s start with a very simple ANN, with few hidden
layers, and with just one neuron in each layer (see fig. 6)
[19].

Let’s also call “activation” the output of each neuron,
also the neurons in the hidden layers as per the definition
of a perceptron (see section IIA):

a(l) = σ
(
w(l)a(l−1) + b(l)

)
(8)

where we have assumed that the activation function
is the sigmoid σ(z), and we have used a superscript to
express the layer the neuron belongs to. In this simplified
example, with one neuron per layer, this superscript is
enough to identify the weight, the bias, and the activation
coming from the previous layer.

Now, let’s look at the cost function eq. (4), and let’s
consider only one input, so to simplify the notation, ne-
glecting the averaging over the training set.

The cost function depends on all the weights and all
the biases of the network. However, this dependence is
“chained”, and it propagates layer after layer. So, in
computing the partial derivatives of the cost function,
we want to “unpack” this chain, and use the chain rule
for composite functions. The cost function depends ex-
plicitly only on the correct output and the actual output,
which in this simplified example is the activation of the
only neuron in the output layer: C(y, a(l)) = 1

2 |y− a(l)|2.
In turn, a(l) depends on the (single) weight, the bias,
and the action of the neuron from the previous layer, as
expressed in eq. (8): a(l)(z) = a(l)

(
w(l)a(l−1) + b(l)

)
.

So, when we want to compute the partial derivative
∂C/∂w(l), the chain rule shows that it is possible to break
the computation in terms which are all connected to the
same layer:

∂C

∂w(l)
=

∂z(l)

∂w(l)

∂a(l)

∂z(l)
∂C

∂a(l)
. (9)

Only when we compute the partial derivative
∂C/∂a(l−1) we will have contributions from the other lay-
ers. This approach of computing the derivatives one layer
at the time, and moving backwards to the previous layers
is the reason for the name “backpropagation”.
Once we have discussed this simplified case with one

neuron per layer, we move to the more realistic case.
In order to discuss this more general case we need to
introduce more indices in the notation: the weights are
identified not only by the layer superscript, but also by
two subscripts, indicating the two neurons are connected

by the edge of that weight: w
(l)
i,j , so that for each layer

there is a matrix of all the weights between the neurons
of that layer and the previous one. For the biases and

the activations only one subscript will be needed: b
(l)
k and

a
(l)
k . Finally, we need to add a subscript also to the cost

function, because in a real case we have a contribution
to the cost function due to each input of the training set:

C
(l)
m

We are not giving all the details of the computation
here, for the details we reference to the historical paper
[20], to the book by Michael Nielsen [16], and also to the
very informative videos in [19].

Figure 6. Oversimplified ANN with one neuron per layer.

VI. CONVOLUTIONAL NEURAL NETWORKS

We could say that although the backpropagation made
an important breakthrough, optimizing and speeding the
training process, and allowing for deep neural network
and more meaningful applications, it did not change the
Machine Learning paradigm.
The research on ANN has kept progressing, and the

more recent results are in the same direction, of making
the training process more efficient, allowing for deeper
and more complex networks.
In this section we present one of the more recent re-

sults, a technique that optimizes the training process.
The main idea behind the Convolutional Neural Net-

works (CNNs) is that we do not necessarily need to con-
nect each neuron to all the neurons of the previous and
the following hidden layers, i.e. we question the efficiency
of the fully connected network design [21].

8

Since CNNs have their main application in image pro-
cessing and image grouping, to better describe the convo-
lutional network design, we will represent the input layer
as a 2D grid, so to help the intuition and associate each
input neuron to a pixel of the digitized image in input
(see fig. 8)

Figure 7. Schematic of the arrangement for a CNN. On the
left, the neurons of the input layer, arranged in a 2D grid, mir-
roring the pixels of the input images. A Local Receptive Field
is highlighted on the corner: all its neurons are connected to
the same neuron of the first hidden layer, represented on the
right.

A. Feature maps and pooling layers

Besides the idea to reduce the number of connections,
and abandon the fully connected architecture, there is
another main intuition behind the Convolutional design.
By connecting all the neurons we not only have a over-
abundant number of connections that slow down the
training without a comparable advantage. We also have
another negative effect: we loose the spatial information
about the input, and each input pixel is treated in the
exact same way. We may say that in the fully connected
architecture we withhold some important information for
the training, because we feed all the input at the same
way, whereas it is valuable to also give some spatial in-
formation, e.g. the fact that some pixels are adjacent, or
close, and some other pixels are far apart.

To implement these ideas, in the convolutional model a
small region of the input neurons (e.g. a square of 5 × 5
neurons), called local receptive field (LRF), is connected
to the same neuron of a first hidden layer.

Then the procedure to create the connections to this
hidden layer continues, and the LRF (i.e. its “shape”) is
shifted of a step, 1 or more neurons to one side (stride),
and all the neurons in this new LRF are connected to the
next neuron in this first hidden layer, and this is repeated
until all the input is “covered” and passed to the hidden
layer.

The particular detail is that the specific set of weights
for the LRF, and the bias of the neuron in the hidden
layer are kept the same, while the LRF is spanned across

the whole input. Since all the weights are fixed, we can
think at the hidden layer as a map: the weights are cho-
sen so to “respond” to a certain feature, and the neurons
in the hidden layer will be activated, or not activated,
depending on whether this feature is present in that area
or not. A feature can be a certain shape, a certain edge
etc. For this reason, this type of hidden layer in the CNN
is called a feature map: it maps a certain feature in the
input.
Together with the feature maps, in the CNN architec-

ture we can use a second type of hidden layer, which are
typically connected following a feature map layer, and
is called pooling layer. A pooling layer can be thought
as a summarizing layer, because it takes a certain group
of neurons from a feature map layer, let’s say a 2 × 2
square, and it connects them to a single neuron. The
criterion can be that of max-pooling, where the output of
the pooling neuron is the maximum of the outputs of the
neurons of the feature map with which it is connected.
Another type of pooling is that where a certain average
is computed, among the connected neurons of the feature
map, e.g. the square root of the sum of the outputs.
The architecture of a CNN does not have a single se-

quence of layers after layers. It rather has a certain num-
ber of feature map layers, all receiving data from the
input layer, and each of them possibly passing data to a
pooling layer. Then all the pooling layers are connected,
usually fully connected, to an output layer (see fig. 8).

Figure 8. Sketch of a typical implementation of a CNN.

VII. CONCLUSIONS

This introduction to Artificial Neural Networks is
rather general, with a summary of the history of the field,
and a description of the main elements and the main fea-
tures of this computational paradigm. We have discussed
the example of the OCR in some detail, to see the ANN
at work on a concrete task. We have also discussed some
more advanced topics: the technique of backpropagation,
which allows for a substantial speedup in the training of
more deep architectures, and then the more recent idea
of Convolutional Neural Networks, which also improve
the efficiency.
Although a more detailed description goes beyond the

9

scope of this article, the bibliography can lead the inter- ested scholar to the relevant literature.

[1] John R Searle. Minds, brains, and programs. Behavioral
and brain sciences, 3(3):417–424, 1980.

[2] John Searle. Minds and brains without programs. Mind-
waves, pages 209–233, 1987.

[3] A. M. Turing. Computing machinery and intelligence.
Mind, LIX, 1950.

[4] Roger Penrose. The Emperor’s New Mind. Oxford Uni-
versity Press, United Kingdom, November, 9 1989.

[5] Warren S. Mc Culloch and Walter Pitts. A logical cal-
culus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133, 1943.

[6] Hilbert David and Ackermann Wilhelm. Grundzüge der
theoretischen logik. 1928.

[7] Alonzo Church. An unsolvable problem of elementary
number theory. American Journal of Mathematics, 58,
04 1936.

[8] Alan M. Turing. On computable numbers, with an appli-
cation to the entscheidungsproblem. Proceedings of the
London Mathematical Society, s2 42, 1937.

[9] Marvin Minsky and Seymour A Papert. Perceptrons: An
introduction to computational geometry. MIT press, 1969.

[10] Pamela McCorduck. Machines who think : a personal
inquiry into the history and prospects of artificial intelli-
gence. A K Peters/CRC Press, 2 edition, 2004.

[11] Stuart Russel and Peter Norvig. Artificial intelligence:
A modern approach. Pearson, 3 edition edition, 2003.

[12] Christopher M. Bishop. Pattern recognition and machine
learning: springer New York. Springer, 2006.

[13] Laurene Fausett. Fundamentals of neural networks: ar-
chitectures, algorithms, and applications. Prentice-Hall,
Inc., 1994.

[14] Madan M Gupta, Liang Jin, and Noriyasu Homma.
Static and Dynamic Neural Networks, From Fundamen-
tals to Advanced Theory. John Walley End Sons. John
Wiley & Sons Inc, 2003.

[15] F. Rosenblatt. The perceptron: A probabilistic model
for information storage and organization in the brain.
Psychological Review, 65, 1958.

[16] Michael A. Nielsen. Neural Networks and Deep Learning.
Determination Press, 2015.

[17] Sanjeev Arora and Boaz Barak. Computational Complex-
ity. A Modern Approach. Cambridge University Press, 1
edition, 2009.

[18] Stephan Moore and Cristopher Mertens. The Nature of
Computation. Oxford University Press, USA, 2011.

[19] Grant Sanderson and 3blue1brown. Neural networks.
Youtube, August 2018.

[20] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

	An introduction to Artificial Intelligence and Deep Learning
	Abstract
	Contents
	Introduction
	Machine Learning
	The recognition/classification problems
	Deep Learning

	Artificial Neural Networks
	The perceptron - the neuron
	The XOR gate and the network

	Optical Characters Recognition (OCR)
	The training
	The Cost Function
	Minimization and gradient descent
	Gradient descent

	Backpropagation
	Details of backpropagation

	Convolutional Neural Networks
	Feature maps and pooling layers

	Conclusions
	References

