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Chapter 1

Introduction

1.1 foreword

These notes are a collection of different material, coming from different sources. In
particular, two lectures from Prof Binney, University of Oxford (youtube online videos)
and the “Quantum Information Theory” class of prof Patrick Heyden, McGill University.
I have also used the original articles, such as [Bel64] and [CHSH69].

1.2 general picture

EPR At first, the problem of entanglement has been risen by Einstein Podolsky and
Rosen [EPR35], and was written as a demonstration that Quantum Theory was
not complete. In the EPR paper, the idea of hidden variables was suggested as a
solution to the “quantum oddity”.

A good place where the EPR paper is well explained is [WM08, §13.1, p. 247-248],

Bell In ’64 John Bell managed [Bel64] to express the problem in a way which was exper-
imentally testable. Indeed, EPR had formulated the problem in a conceptual way.
On one hand there was the hidden variable theory of which EPR had suggested the
existence; on the other hand, the Quantum Theory was presented as an alternative
description, the conceptual difference being the probabilistic or deterministic de-
scription of reality. The contribution of Bell was to find a point of contact between
the two descriptions, i.e. a specific quantity, which can be formulated using the
two different descriptions, but which has a different, unreconcilable value in the
models. Moreover, this quantity can be experimentally measured, and in general
a result will be compatible with only one of the two models.

One important remark is that the theorem discriminates between Quantum Theory
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(QT) and a Local Hidden Variables Theory (LHVT). This means that a Non-Local
Hidden Variable Theory is compatible with the description of QT.

Entanglement [...]

Non-local boxes [...] (another way to describe these things)

Teleportation [...] (show the key role of entanglement)
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Chapter 2

Background theory

2.1 No-cloning theorem

Theorem 2.1.1 (no-cloning thorem).
Quantum information can not be cloned.
More formally, given two non ortogonal, non parallel vectors i.e. two vectors |φ1〉, |φ2〉
such that

0 < |〈φ1|φ2〉| < 1 (2.1)

then no unitary transformation Û can implement the following

∀j, Û |φj〉A |0〉B |0〉C = |φj〉A |φj〉B |ω〉C (2.2)

remarks

• In closed systems, the only transformations allowed are unitary transformations.

• the unitary transformations do not change the inner product.

• the value of j is unknown to the transformation. In other words the task is to
clone an unknown state. If the state is known, it is possible to clone it.

• A is the system the state of which is to be copied.

• B is the system to which we want to copy the state of A. The starting state is an
arbitrary known state. Here |0〉 is used just as a dummy ket. If we want to start
with another dummy ket, we can always apply an unitary transformation from |0〉
to the desired state, and “absorb” this unitary transformation in Û .
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proof of the no-cloning theorem.

We want to compare the inner product between the two possible initial states, and the
inner product between the two corresponding final states. Here initial and final means
before and after the application of the transformation U . The inner product before the
transformation is:

|(〈φ1|A 〈0|B 〈0|C)(|φ2〉A |0〉B |0〉C)| = (2.3a)

= |〈φ1|φ2〉A 〈0|0〉B︸ ︷︷ ︸
=1

〈0|0〉C︸ ︷︷ ︸
=1

| (2.3b)

= |〈φ1|φ2〉| (2.3c)

If we apply the transformation to both the vectors, and we compute the inner product,
we have:

∣∣∣(〈φ1|A 〈0|B 〈0|C Û
†
)(

Û |φ2〉A |0〉B |0〉C
)∣∣∣ = (2.4a)

= | (〈φ1|A 〈φ1|B 〈ω1|C) (|φ2〉A |φ2〉B |ω2〉C) | (2.4b)

= |〈φ1|φ2〉A〈φ1|φ2〉B〈ω1|ω2〉C | (2.4c)

= |〈φ1|φ2〉|2 |〈ω1|ω2〉| (2.4d)

Now, because of the relation (2.1), it is

|〈φ1|φ2〉|2 < |〈φ1|φ2〉| (2.5)

with strict inequality. This means that the result (2.4d) is incompatible with the result
(2.3c). This contradicts the property of the unitary transformations (which are supposed
to conserve the inner product).
This proves that such transformation does not exist!

This proof is shorter, and uses explicitly the state that is to be cloned. In [Wil11][§3.5.4]
there is a different, longer proof, which works with the unknown |φj〉 state.

2.2 Side on the tensor product

The inner product defined on the tensor-product-space (compound system) is the prod-
uct of the inner products defined on each sub-system.
The intuition on the inner product is that it measures the indistinguishability between
two vectors (quantum states), zero (perpendicular states) meaning the highest distin-
guishability. Then the distinguishability of a compound system is the product from
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each subsystem. Taking the product is consistent with the meaning of the overall dis-
tinguishability, because if the two states of a subsystem are perpendicular, their inner
product is zero, and this makes zero the all inner product, i.e. makes the whole state of
the compound system, regardless whether the other states of the other subsystems are
indistinguishable or not.
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Part I

Entanglement in physics
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Chapter 3

Bell’s inequalities

(Note to self: look for “Tsirelson’s bound” [Cir80])

3.1 Bell theorem

[Bel64]
As anticipated in the introductory chapter 1.2, Since Quantum Theory yields only ex-
pected values, the quantity chosen to investigate the difference between LHVT and QT
is an expectation value.

3.1.1 Definitions

We will study a compound system, made of two subsystems. We will describe the
outcomes of measurements done on the two subsystems, in two separate spatial locations.
The measurement apparatuses are supposed to be identical. Moreover, the measurement
is specified by a measurement parameter. We will call the two outcomes

A(~a);B(~b) (3.1)

respectively, where a and b are the measurement parameters, which in general they can
be vectors. To fix the ideas we can imagine the measurement being the projection of a
physical quantity (e.g. the angular momentum) along a certain direction, the direction’s
vector being the measurement’s parameter. The measurement outcomes are limited to
two possible values:

∀a,A(~a), B(~a) ∈ {+1,−1}. (3.2)

Finally, we assume that there exist a “physical correlation” between the two outcomes of
the two measurements (on the two subsystems) in the case when the two measurement
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parameters are chosen to be equal:

∀aA(~a) = −B(~a). (3.3)

We can imagine a realistic physical situation where this is the case: if the measurement
performed is the angular momentum of the two subsystem, a total angular momentum
conservation will provide for this desired correlation. We introduce also the correlation
function, defined as the expectation value (average over several measurements) of the
product of the two outcomes:

P (~a,~b) ≡ 〈A(~a)B(~b)〉. (3.4)

Comments:
- the correlation in the case of coincident measurement parameters is assumed to be 1
as “physical hypothesis”
- in the generic case of different measurement parameters, the expectation value of the
product is a good expression of the correlation: if the two outcomes are uncorrelated,
the different values of the product will be averaged out, and the expectation value will
be zero. The more the correlation (same outcomes from the two measurements on the
two subsystems, either both +1 or both −1), the closer the average will be to 1. The
more the anti-correlation (opposite outcomes) the closer the average will be to −1.

In the two following sections we will consider the difference of two correlations for two
different couples of measurements parameters value, one of the two values being fixed:

P (~a,~b)− P (~a,~c) = 〈A(~a)B(~b)− A(~a)B(~c)〉 (3.5)

and we will compute this difference using two different “models”.

3.1.2 Quantum mechanical model

Applying the formalism of quantum mechanics [...] we have:

〈A(~a)B(~b)〉 = −~a ·~b (3.6)

〈A(~a)B(~a)〉 = −~a ·~b (3.7)

3.1.3 Local Hidden Variables model

In this section we want to compute the correlation difference 〈P (~a,~b)−P (~a,~c)〉 using the
following model. We consider a set of unknown variables, denoted collectively with λ.
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In this model the outcomes A and B depend not only on the measurement parameter,
but also on these hidden, unknown variables:

A = A(~a, λ); B = B(~b, λ) (3.8)

The outcomes values are deterministically dependent on those two values (the mea-
surement parameter and the hidden variable). We observe unpredictable fluctuations
because the hidden variables fluctuate, and we don’t know their value. If we call Γ the
set of all the possible values of the hidden variables, the expectation values will be found
integrating λ over Γ:

P (~a,~b) =

∫
Γ

A(~a, λ)B(~b, λ)ρ(λ)dλ (3.9)

where ρ(λ) is the probability distribution of λ.

derivation of the inequality

From now on, to make the notation more legible, we will omit the arrow on the vectors
representing the measurement parameter.

P (a, b)− P (a, c) =

∫
Γ

[A(a, λ)B(b, λ)− A(a, λ)B(c, λ)] ρ(λ)dλ (3.10a)

we can use the “physical correlation” hypothesis: ∀a, λA(a, λ) = −B(a, λ) and have

P (a, b)− P (a, c) = −
∫

Γ

[A(a, λ)A(b, λ)− A(a, λ)A(c, λ)] ρ(λ)dλ (3.10b)

Then we use the hypothesis: ∀b, A(b, λ) ∈ {±1} ⇒ A2(b, λ) = 1

P (a, b)− P (a, c) =−
∫

Γ

[
A(a, λ)A(b, λ)− A(a, λ)A2(b, λ)A(c, λ)

]
ρ(λ)dλ (3.10c)

=−
∫

Γ

A(a, λ)A(b, λ) [1− A(b, λ)A(c, λ)] ρ(λ)dλ (3.10d)

=

∫
Γ

A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] ρ(λ)dλ. (3.10e)

Now, if we consider the absolute value of both terms, we have:

|P (a, b)− P (a, c)| =
∣∣∣∣∫

Γ

A(a, λ)A(b, λ) [A(b, λ)A(c, λ)− 1] ρ(λ)dλ

∣∣∣∣ (3.10f)

=

∣∣∣∣∫
Γ

A(a, λ)A(b, λ) [1− A(b, λ)A(c, λ)] ρ(λ)dλ

∣∣∣∣ . (3.10g)

15



Then, we consider that the content of the square bracket can be either 0 or 2, so it is
non negative; and on the other hand the product A(a, λ)A(b, λ) can be either +1 or −1,
and then [A(a, λ)A(b, λ)] ≤ 1.
So, we can write:

|P (a, b)− P (a, c)| ≤
∣∣∣∣∫

Γ

[1− A(b, λ)A(c, λ)] ρ(λ)dλ

∣∣∣∣ (3.10h)

=

∣∣∣∣∫
Γ

ρ(λ)dλ−
∫

Γ

A(b, λ)A(c, λ)ρ(λ)dλ

∣∣∣∣ (3.10i)

≤
∣∣∣∣∫

Γ

ρ(λ)dλ

∣∣∣∣+

∣∣∣∣∫
Γ

A(b, λ)A(c, λ)ρ(λ)dλ

∣∣∣∣ (3.10j)

=1 + P (b, c) (3.10k)

where we have used the normalization of the probability distribution:
∫

Γ
ρ(λ)dλ = 1.

Finally, we obtain the Bell inequality

|P (a, b)− P (a, c)| ≤ 1 + P (b, c) (Bell’s inequality) (3.11)

3.1.4 Contradiction

Once we have computed, in the two previous subsections, an expression of the same
quantity (the difference of two correlation functions computed with “three measurement
parameter settings”), using to different models, we want now to compare the two results.
The claim is that the two results are incompatible. More precisely, the claim is that the
quantum mechanical result can not satisfy equation (3.11).

first argument, semi-rigorous

If we look at the left hand side of equation (3.11), we can perform a Taylor (actually
Mac Laurin) expansion of the two functions P (a, b) and P (a, c), with respect to (a− b)
and (a− c) respectively, around the value 0 i.e. around (a = b) and (a = c) respectively.
Because of the minus sign, the terms in a will cancel out. We can conclude that the left
hand side is of the order of |b − c|. This means that for b → c the right hand side is
approaching the value 0 linearly, and because of the absolute value, this minimum can
not be a stationary point (technically, it is a point where the left and right derivative
are different: they are the slope of the line). See figure 3.1.
So we have that P (b, c) is lower bounded by such a function.
On the other hand, we remember that the quantum mechanical model predicts for the
same quantity, the result −b · c = − cos θ, where θ is the angle between b and c. As b
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Figure 3.1: solid line= prediction of LHV model. Dotted line=prediction of the QM
model

approaches c, i.e. as θ approaches zero, the function cos θ has the same derivative on
both sides. In other words the function has a stationary point in zero.

Since the LHV model’s prediction is lower bounded by the linear function, which is
strictly greater than the QM prediction in a neighborhood of 0, this means that the two
predictions are incompatible.

Detailed proof

[...]

3.2 CHSH inequality

The CHSH [CHSH69] inequality is a generalization of the Bell’s inequality. The meaning
is similar, but it applies to a more general situation.

In particular, the limitation of Bell’s hypotheses, that CHSH want to address, is the
“visibility” of the anti-correlated states measurements. Let’s explain. In a Bell-like
experiment, we have a couple of particles, in a singlet state. If the two measurements
are done along the same direction, according to the theory the data should be perfectly
correlated (or anti-correlated), i.e. the correlation function should be ±1. But because
of experimental errors, it is likely that the results are not exactly ±1.

Now, let’s go into the details.

In the same experimental situation as for Bell’s theorem, and using the same definition
(3.4) of correlation P (a, b), we consider the following absolute value of the difference
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between two correlations:

|P (a, b)− P (a, c)| =
∣∣∣∣∫

Γ

[A(a, λ)B(b, λ)− A(a, λ)B(c, λ)] ρ(λ)dλ

∣∣∣∣ (3.12)

Now, we use the relation:∣∣∣∣∫ f(x)dx

∣∣∣∣ ≤ ∫ |f(x)| dx (3.13)

(see [Fio95, vol I, §11.II, pag 426, eq. (11)] ) Now, using the fact that

∀a,A(a, λ) ∈ {+1,−1} (3.14)

we can write:

|P (a, b)− P (a, c)| ≤
∫

Γ

|A(a, λ)B(b, λ)− A(a, λ)B(c, λ)| ρ(λ)dλ (3.15a)

=

∫
Γ

∣∣∣∣∣∣A(a, λ)B(b, λ)− A(a, λ)B2(b, λ)︸ ︷︷ ︸
=1

B(c, λ)

∣∣∣∣∣∣ ρ(λ)dλ (3.15b)

=

∫
Γ

∣∣∣∣∣∣∣A(a, λ)B(b, λ) [1−B(b, λ)B(c, λ)]︸ ︷︷ ︸
={0 or 2}≥0

∣∣∣∣∣∣∣ ρ(λ)dλ (3.15c)

=

∫
Γ

|A(a, λ)B(b, λ)|︸ ︷︷ ︸
=1

[1−B(b, λ)B(c, λ)] ρ(λ)dλ (3.15d)

=

∫
Γ

[1−B(b, λ)B(c, λ)] ρ(λ)dλ (3.15e)

=

∫
Γ

ρ(λ)dλ︸ ︷︷ ︸ = 1−
∫

Γ

B(b, λ)B(c, λ)ρ(λ)dλ (3.15f)

= 1−
∫

Γ

B(b, λ)B(c, λ)ρ(λ)dλ (3.15g)

summarizing:

|P (a, b)− P (a, c)| ≤ 1−
∫

Γ

B(b, λ)B(c, λ)ρ(λ)dλ (3.16)

At this point we introduce two “measurement positions”, called b and b′ such that:

P (b′, b) = (1− δ) (3.17)
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where 0 ≤ δ ≤ 1. Experimentally interesting values for delta are values close to, but
different from, zero.
Now, we split the Γ region in two, such that:

Γ± := {λ : A(b, λ) = ±B(b′, λ)} (3.18)

And, elaborating on equation (3.17) we can write:

P (b, b′)
def
=

∫
Γ

A(b, λ)B(b′, λ)ρ(λ)dλ = (1− δ) (3.19a)

=

∫
Γ+

A(b, λ)B(b′, λ)ρ(λ)dλ+

∫
Γ−

A(b, λ)B(b′, λ)ρ(λ)dλ (3.19b)

=

∫
Γ+

A(b, λ)A(b, λ)ρ(λ)dλ−
∫

Γ−

A(b, λ)A(b, λ)ρ(λ)dλ (3.19c)

=

∫
Γ+

A2(b, λ)︸ ︷︷ ︸
=1

ρ(λ)dλ−
∫

Γ−

A2(b, λ)︸ ︷︷ ︸
=1

ρ(λ)dλ (3.19d)

=

∫
Γ+

ρ(λ)dλ−
∫

Γ−

ρ(λ)dλ (3.19e)

= 1− 2

∫
Γ−

ρ(λ)dλ (3.19f)

(1− δ) = 1− 2

∫
Γ−

ρ(λ)dλ (3.19g)

⇒∫
Γ−

ρ(λ)dλ = 1
2
δ (3.19h)

where in (3.19f) we have used the relation:∫
Γ+

f(x)dx−
∫

Γ−

f(x)dx = (3.20a)

=

∫
Γ+

f(x)dx+

∫
Γ−

f(x)dx−
∫

Γ−

f(x)dx︸ ︷︷ ︸
=0

−
∫

Γ−

f(x)dx

(3.20b)

=

∫
Γ

f(x)dx+

∫
Γ−

f(x)dx− 2

∫
Γ−

f(x)dx (3.20c)

= 1− 2

∫
Γ−

f(x)dx. (3.20d)
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Then, looking at the right-hand-side of equation (3.16), and using the definition of Γ±,
we have:∫

Γ

B(b, λ)B(c, λ)ρ(λ)dλ =

∫
Γ+

A(b′, λ)B(c, λ)ρ(λ)dλ−
∫

Γ−

A(b′, λ)B(c, λ)ρ(λ)dλ

(3.21a)

=

∫
Γ

A(b′, λ)B(c, λ)ρ(λ)dλ− 2

∫
Γ−

A(b′, λ)B(c, λ)ρ(λ)dλ

(3.21b)

= P (b′, c)− 2

∫
Γ−

A(b′, λ)B(c, λ)ρ(λ)dλ (3.21c)

≥ P (b′, c)− 2

∫
Γ−

|A(b′, λ)B(c, λ)|︸ ︷︷ ︸
=1

ρ(λ)dλ (3.21d)

= P (b′, c)− 2

∫
Γ−

ρ(λ)dλ (3.21e)

= P (b′, c)− δ (3.21f)

where we have used equation (3.19h). Summarizing∫
Γ

B(b, λ)B(c, λ)ρ(λ)dλ ≥ P (b′, c)− δ (3.22)

Using this last result in (3.16) we have

|P (a, b)− P (a, c)| ≤ 1− [P (b′, c)− δ] (3.23)

And replacing the definition (3.17):

|P (a, b)− P (a, c)| ≤ 1− P (b′, c) + δ (3.24a)

= 1− P (b′, c) + [1− P (b, b′)] (3.24b)

= 2− P (b′, c)− P (b, b′) (3.24c)

Transporting the right terms to the left, we finally have

|P (a, b)− P (a, c) + P (b′, c) + P (b, b′)| ≤ 2 (3.25)

which is the CHSH inequality.
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3.2.1 Coincidences

Another merit of CHSH with respect to Bell (beside the more simple form) is to express
the inequality also in terms of “coincidences of detections” instead of probabilities. This
second relation is a more useful one, because the photon detectors have a quantum
efficiency far from unity!
[...]
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Part II

Entanglement in Information
Theory
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Chapter 4

Non-local boxes

(This chapter is based on the lecture notes of from Patrick Hayden, McGill University,
2013)
Let’s consider a function

f : {0, 1}n︸ ︷︷ ︸
Alice′s

×{0, 1}n︸ ︷︷ ︸
Bob′s

→ {0, 1} (4.1)

Definition 4.0.1 (communication complexity).
# of bits needed to be exchanged between Alice and Bob, in order to compute the function

Let’s see some examples:

1. the function:

f(xn, yn) = xj ⊕ yj (4.2)

has comm. compl. = 1

Proof:
Alice needs to send to Bob her j-th bit, Bob already knows his j-th bit and can
compute xj ⊕ yj.

2. the function

f(xn, yn) =
n∨

j=1

(xj ∧ yj) (4.3)

we can give a “meaning” to this function: the binary variables mean whether in
a specific day the person is free or not, and the function computes whether in
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the range of days considered there is at least one day where both are free. This
function is called non destroyingness.

The comm. compl. of this function is not 1. Patrick is not sure but should be
O(n)

3. the inner product

f(xn, yn) =
n∑

j=1

xj · yj mod 2 (4.4)

has comm. compl. = n

Now we introduce a fictitious device called Non-Local Boxes (NLB)

Figure 4.1: Non-Local Boxes

So, this device is made of two (non-local) parts, one for each party, who are supposed
to be far apart from each other.
The device works like this:
each party inputs a bit, Alice inputs x and Bob inputs y. Then, each party receives an
output of one bit, a for Alice and b for Bob. The device is such that

a⊕ b = x ∧ y (4.5)

In other words, the device is such that there is a special correlation between the two
outputs.
Let’s point out that this device does not allow any communication between Alice and
Bob. Indeed, if the device was such that the bit Bob receives as output is the bit input
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by Alice, the device would allow communication. But in the case at hand there is a
more subtle relation.
We can prove that the NLB do not allow communication.
Indeed, a way to implement the NLB (a way that complies with the definition (4.5)) is
if a is completely random, and b = a⊕ (x ∧ y).
This implementation satisfy the definition because:

a⊕ b = a⊕ (a⊕ (x ∧ y)) (4.6a)

= (a⊕ a)⊕ (x ∧ y) (4.6b)

= 0⊕ (x ∧ y) (4.6c)

= (x ∧ y) (4.6d)

as required.
In the last computation we have used the distributivity of the “x-or”, the result ∀a, a⊕
a = 0, and the result ∀x, x⊕ 0 = x.
This shows that, in the case a is random, b is also random, (because b is equal to a
random variable xor-ed with (x ∧ y)), and in particular a is uncorrelated to y, and b is
uncorrelated with x.

4.1 NLB collapse the communication complexity

Statement 4.1.1.
If Alice and Bob have access to NLB, the communication complexity of *any* boolean
function “collapses” to 1:

∀f, CCNLB(f) ≤ 1 (4.7)

Proof.
It is possible to show that the set of the following three logic ports:

• NOT

• fan-out

• AND

is a complete set, meaning that any boolean function can be implemented using only
those three ports. So, if we show that we can implement these three ports, we have
shown the result for any function. Remark: what we want to implement is the non-local
version of these ports. This means that we define a non-local bit, as the couple of two
local bits, each held by each the two parties Alice and Bob: (a, b). The value of the
non-local bit will be defined as

x
def
= a⊕ b (4.8)

27



non-local NOT gate

[...] it is sufficient that one of the two party negates its bit [...]

non-local fan-out

[...] it is sufficient that each party clones its bit [...]

non-local AND gate

Alice and Bob start with two non-local bits

x = (c⊕ d) (4.9a)

y = (e⊕ f) (4.9b)

where c and e are local to Alice, and d and f are local to Bob. The goal is to compute:

x ∧ y = (c⊕ d) ∧ (e⊕ f) (4.10a)

= (c ∧ e)︸ ︷︷ ︸
local to Alice

⊕ (c ∧ f)⊕ (d ∧ e) ⊕ (d ∧ f)︸ ︷︷ ︸
local to Bob

(4.10b)

Since c and e are local to Alice, she can locally compute (c ∧ e). In the same way, Bob
can locally compute (d ∧ f). To obtain (c ∧ f) and (d ∧ e), Alice and Bob exploit the
NLB: they input their local bits in the NLB, and keep the corresponding outputs. In
particular

• Alice inputs c, Bob inputs f , and then Alice gets the output g, and Bob gets the
output h, such that (by definition of NLB) g ⊕ h = c ∧ f

• Alice inputs d, Bob inputs e, and then Alice gets the output l, and Bob gets the
output k, such that (by definition of NLB) l ⊕ k = d ∧ e

At the end of this round of operations:

• Alice holds (c ∧ e), g, l

• Alice holds (d ∧ f), h, k

To obtain the final result what is needed is:

(c ∧ e)⊕ (c ∧ f)⊕ (d ∧ e)⊕ (d ∧ f) (4.11a)

(c ∧ e)⊕ (g ⊕ h)⊕ (l ⊕ k)⊕ (d ∧ f) (4.11b)

[(c ∧ e)⊕ g ⊕ l]⊕ [h⊕ k ⊕ (d ∧ f)] (4.11c)
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and we notice that the first square bracket is local to Alice, and the second is local to
Bob.
So, to obtain the final result, it is sufficient that one of the two parties sends its partial
result (the content of square brackets in (4.11c)) to the other party.
We stress that this final exchange of information is the only one necessary, and it consists
of 1 bit.
In other words, all the computation has been done locally; to compute the desired “non-
local bit” all is needed is that one of the two parties sends to the other its “local part”
of the non-local final result (a non local bit is a couple of local bits), in order to compute
the final ⊕.
Because of the linearity, once we have proven this result for the complete set of the three
logic gates, this proves the result for any generic boolean function.

4.2 Classical simulation of NLB

[...]

4.3 Quantum simulation of NLB

[...]

4.4 Summary: CHSH inequality

[...]
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Chapter 5

Quantum channels

5.1 Quantum channels

5.2 Superdense coding

The original idea was published in 1992 [BW92].
See also Patrick Hayden course, lecture 10 (t1h9′0′′)
Let’s ask which is the most efficient way to transmit classical information using qubits.
The trivial way is to choose a basis, encode each bit in a qubit, transmit the qubits, and
measure the qubits projecting on the chosen basis.
We can generalize this and say that if we want no errors (distinguish perfectly), to
transmit d distinguishable messages we need a d-dimensional quantum system. Then
we choose an orthonormal basis, and encode 1 bit per qubit. This is because, if we don’t
want errors, we need all orthonormal projectors, and we need a d-dimensional system
in order to have d orthonormal projectors. If we try to “squeeze” more information we
will induce errors, because of non-distinguishable states.
However, there is a loophole to this, and the loophole is represented by entanglement!
Let’s imagine (see figure 5.1) Alice having two bits (i.e. 4 symbols), and trying to send
them to Bob. They share an entangled pair of qubits, let’s say |Φ+〉. Then, Alice
performs a unitary operation on the qubit of the entangled pair that she has, and in
particular she applies one of the four “one qubit Pauli operators”, depending on which
of the four symbols she wants to send. In particular, she will apply one of the four “one
qubit Pauli matrices” (represented in the computational basis):

σ0 =

(
1 0
0 1

)
; σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (5.1)

Then she sends her entangled qubit to Bob. Bob has now two qubits, so he can perform
a projective measurement.
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Figure 5.1: Alice has two bits (four labels), and she wants to transmit them to Bob.
the dotted line separates Alice’s and Bob’s labs. They share an entangled state |Φ+〉.
Then Alice sends her qubit to Bob, and Bob performs a projective measurement.

To understand which four projectors to use for this projective measurement, let’s con-
sider the four possibile two-qubits state he may have, depending on which Pauli operator
Alice has applied.
The starting entangled pair is:

|Φ+〉 = |00〉+ |11〉 (5.2)

then we can represent the generic state of the entangled pair after the action of Alice’s
unitary operation as:

|ψk〉 = (σk ⊗ I) |Φ+〉 (5.3)

explicitly:

|ψ0〉 =
1√
2

(|00〉+ |11〉) (5.4a)

|ψ1〉 =
1√
2

(|10〉+ |01〉) (5.4b)

|ψ2〉 =
1√
2

(−i |10〉+ i |01〉) (5.4c)

|ψ3〉 =
1√
2

(|00〉 − |11〉) (5.4d)
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It can be shown (by directly computing the products) that those vectors are orthonormal:

〈ψk|ψj〉 = δk,j. (5.5)

The net result is that:

Theorem 5.2.1 (Superdense coding). It is possible to transmit 2 bits transmitting 1
qubit, and consuming 1 ebit (1 pair of maximally entangled qubits) .
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Chapter 6

Teleportation

(note to self: read [BBC98])
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