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1 Mathematical definitions
General references: [CTDL05, CCP82, Sha94]

1.1 Hilbert space
We define a special (euclidean) vector space, which will be called Hilbert
space. We omit here the complete definition and list of properties of this
special vector space.

Let’s just mention one aspect: the dimension. An Hilbert space can have
finite dimension or infinite dimension. Which dimension should be used for
the Hilbert space that describes a physical (quantum) system depends on the
system, and in particular on its degrees of freedom.

1.1.1 Infinite dimension

The subatomic particles (e.g. electrons) must be described using an Hilbert
space with infinite dimensions. In this case the elements of the space can be
represented as complex functions:

H : {ψ : R3 7→ C} (1)

In this case the scalar product is defined as:

(ψ, φ) ≡
∫
ψ∗(~r) · φ(~r) d3~r (2)

A lot of efforts have to be made, to carefully define the support of this
vector space properly. In particular, if we use the set of functions integrable
according to Reimann, it turns out that the space would not be complete.
So a new type of integral is needed (the Lebesgue integral), and we need to
include in the space not only the functions but also the distributions (e.g.
the Dirac delta ‘function’).

1.1.2 Finite dimension

Some more simple quantum systems are described by an Hilbert space with
finite dimensions.This is in particular the case with the qubit, the quantum
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system at the center of the quantum information/computation theory. This
system is described by an Hilbert space of dimension d=2.

The elements of this space will be represented as column vectors, while the
elements of the dual of the vector space will be represented as row vectors.
In this case the scalar product is defined as

(ψ, φ) ≡ (a∗1, a∗2)
(
b1
b2

)
≡ a∗1b1 + a∗2b2 (3)

where:

ψ, φ ∈ H; ψ =
(
a1
a2

)
; φ =

(
b1
b2

)
(4)

and we have used the “row times column” matrix product.

Sometimes, the representation as columns and rows is used also for the
infinite-dimensional case, when this is more intuitive. In the case of infinite
dimension we use ellipses, as in

ψ, φ ∈ H, ψ =


a1
a2
a3
...

 , φ =


b1
b2
b3
...

 . (5)

1.2 Operators on the Hilbert space
We will need linear operators defined on the Hilbert space:

Ô : H 7→ H. (6)

A simple (and important) example is the position operator. If we consider
the simplified case of the Hilbert space of the one dimensional functions:

H = {ψ : R 7→ C} (7)

we define

X̂ : ψ(x) 7→ x · ψ(x) (8)
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This operator is sometimes called “multiplication operator”, because it
just takes the function and multiplies it for its independent variable. The
3D version is a “collection of operators”, each multiplying for a different
component: (X̂, Ŷ , Ẑ).

Another example is the “derivative operator”. Again in the simplified case
of the Hilbert space of the one dimensional functions, we define

D̂ : ψ(x) 7→ dψ(x)
dx (9)

1.3 Dirac notation
It is useful to introduce the following notation. We denote an element of the
Hilbert space as:

|ψ〉 ∈ H (10)

and an element of the dual space as

〈ψ| ∈ Hd (11)

The first is called a ket, and the second is called a bra.

The scalar product will be, in this notation:

(ψ, φ) ≡ 〈ψ|φ〉 (12)

1.4 Eigen-basis representation
We now turn our attention to the eigenvectors of a given linear operator. If
we consider the X̂ operator, we will designate with {|x〉}x∈R the collection
of its eigenvectors. It is possible to show that X̂ is an hermitian operator,
so that:

• its collection of eigenvectors is an orthonormal basis for the Hilbert
space (called eigenbasis of X̂)

• all its eigenvalues are real, and in particular

• its eigenvalues are x, i.e. ∀x ∈ R, X̂ |x〉 = x |x〉
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So, we can imagine that the abstract vector |ψ〉 ∈ H has as components,
in the representation of the eigenbasis {|x〉}x∈R of X̂, the complex values:

{〈x|ψ〉}x∈R = {ψ(x)}x∈R (13)

This means that, if we want to visualize the vector, or “ket” |ψ〉 as a column,
in the representation of the eigenbasis of the position operator, we have:

|ψ〉 =


ψ(x1)
ψ(x2)
ψ(x3)

...

 (14)

where (x1, x2, x3, . . . ) change with continuity over R. Of course this is
an “hand-waving” improper way of talking. Nevertheless is useful for the
intuition.
As an exemple, this shows how the Hilbert space has to be infinite-dimensional.

Another linear operator is the impulse operator P̂x defined as:

P̂ |ψ〉 ≡ ∂ψ

∂x
(15)

1.5 Representation of an operator
If the vectors are represented as column arrays, and the co-vectors (elements
of the dual space) are represented as row arrays, the linear operators can be
represented as matrices.

Of course, a representation is given in a specified basis. If we represent
the operator X̂ in its eigenbasis the matrix elements will be

(
X̂
)

x,x′
= 〈x| X̂ |x′〉 (16)

Of course, this matrix will be diagonal, as can be shown using the or-
thonormality of the eigenbasis.

This gives also the origin of the names bra and ket, since they encompass
in a bracket the operator.
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2 Postulates of QM

2.1 Introduction: state and observable
We need to look carefully at how we describe a system. In classical mechanics
we have some parameters, and a certain (well chosen) collection of values of
these parameters tells us all we need to know about the system, i.e. we have
a full description of the system.

In quantum mechanics we have to separate two concepts, which in this
classical framework are “mixed up”.

On one hand, we want to consider “the state of the system”, and on
the other hand, we want to consider the possible parameters which can be
measured. We will say that a system is in a certain state, which is an abstract
thing and contains all the information about the system, and then we decide
to “interrogate” the state with respect to a specific parameter. We call the
parameter “an observable” of the system. To perform a measurement means
to choose the observable, and interrogate the state of the system with respect
to that observable.

2.2 The postulates
1. each state of a quantum system is described by an element of an Hilbert

space

2. each observable is represented by an hermitian operator over the same
Hilbert space

3. the only possible results of a measurement of that observable are rep-
resented by the eigenvalues of the operator Ô. In particular, if the
system under measurement is in the state |ψ〉, the probability that the
measurement of Ô gives as result o is given by | 〈o|ψ〉 |2. Right after
the measurement the system will be in the corresponding eigen-state
|o〉.

4. the evolution of a quantum system is given by the Shrödinger equation:

Ĥ |ψ〉 = i~
∂

∂t
|ψ〉 (17)

where the operator Ĥ is the one representing the energy of the system
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As a first application, we give a physical meaning to the values ψx of a
ket |ψ〉: |ψ(x)|2 is the probability for the system to be found in the position
x.
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