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Chapter 1

Introduction

In this chapter we will introduce the main concepts.

1.1 Functions

A function can be imagined as a ’processing device’, which processes numbers.
In the most simple case, there is a single number as input, and a single number as output.
In other words, a function can be defined as a relationships between two (or more) numbers
that are defined by the properties of the function. The input (variable) is changeable, and
the output depends on the properties of the function (’commands’ included to the ’processing
device’ that tell it how to work with the input).

1.2 Limits

In this section we will introduce the definition and concept of limits.

1.2.1 Zeno paradox
Zeno paradox tells us a story of how correct understanding of concepts of the limit, infinity
and infinitesimality can explain the things that seems impossible. The story starts with the
competition between the fastest runner and the turtle to run to the finish first. As the turtle
is obviously slower it has an advantage and starts closer to the finish. The star gun shots,
and competition begins. The champions start the moving, and after some time they change
their positions closer to the finish, and, obviously, the runner goes the larger distance, but
the distance between the runner and the turtle is not 0 because in this time the turtle also
moved from the starting point to another one. After the second perion of time the runner
and the turtle also moved from their points further, and the distance between them became
smaller but still not zero. This steps could be repeated as many times as you want up to
infinite, and the distance between the champions and the turtle will never be zero, because
turtle is continuing moving while the runner moves. So, according to the paradox, the runner
will never catch up the turtle. But intuitively we understand that it is not true. But what
makes the contradiction?

1.2.2 Velocity and speed
We know that the moving objects has the velocity that is the distance the object goes through
the time of moving.

v = δS/δt (1.1)

With this formula it looks like that the paradox is quite acceptable. But in this way we can
calculate the overage velocity in the selected time periods and selected space intervals. The
absolute speed - the velocity of the object at the defined time point at the defined point of
space - that is the characteristic of the object which is interesting for us. Itself the ’absolute

5



6 2023-11-15 21:00

speed’ by the definition is oxymoron as the object at a certain point has no speed because it
does not move in the space!
Here we go to the limits.

1.2.3 Limits definition
For the more interesting functions, limits are the points(numbers) that the function never
achieve. But usually the limit of the function is the point where the function tends to achieve
the value (and it can be defined in the point as well as not) but does not cross it. For instance,
limit of x2 with x -> 0 is equal 0 and at 0 the function is defined but does not cross the limit
point.
Also, limits could be right (for the larger values of the variable) and left (for the lower values
of the variable).

1.3 Derivatives

[...]



Chapter 2

Differential Equations

2.1 Vector Spaces

2.1.1 definition of a vector space

We briefly remind the definition of vector space.
To “build” a vector space we need:

• a set of elements: S (called “vectors”)

• a “function” called “sum”, defined on S, such that to any pair of elements in S it
associates an element in S:

∀u⃗, v⃗ ∈ S → (u⃗+ v⃗) ∈ S (2.1)

• a function called “multiplication with a number” (or “multiplication with a scalar” )
such that to any pair of an element v⃗ in S and a real number α in R, it associates an
element of S:

v⃗ ∈ S, α ∈ R → αv⃗ ∈ S (2.2)

The two functions need the following properties:

properties of the sum

• commutative:

v⃗ + u⃗ = u⃗+ v⃗, ∀v⃗, u⃗ ∈ S (2.3)

• associative:

(v⃗ + u⃗) + w⃗ = v⃗ + (u⃗+ w⃗), ∀v⃗, u⃗, w⃗ ∈ S (2.4)

• with a neutral element 0⃗ (called “null vector”), such that:

v⃗ + 0⃗ = v⃗, ∀v⃗ ∈ S (2.5)

• with a symmetric element −v⃗:

∀v⃗ ∈ S∃(−v⃗) ∈ S : v⃗ + (−v⃗) = 0⃗. (2.6)

7
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properties of the multiplication with a scalar

• α(βv⃗) = (αβ)v⃗ (2.7)

• 1v⃗ = v⃗ (2.8)

• α(v⃗ + u⃗) = αv⃗ + αu⃗ (2.9)

• (α+ β)v⃗ = αv⃗ + βv⃗ (2.10)

we notice that from these properties we have:

αv⃗ = 0⃗ iif α = 0orv⃗ = 0⃗ (2.11)

which is called “law of the cancellation of the product”. Here and in the following “iif” stands
for “if, and only if”.

2.1.2 Subspaces
A subset S0 of S is defined a “subspace of S” when:

v⃗, u⃗ ∈ S0 ⇒ v⃗ + u⃗ ∈ S0 (2.12a)
v⃗ ∈ S0, α ∈ R ⇒ αv⃗ ∈ S0 (2.12b)

As a consequence of this definition, any subspace S0 of S includes the null vector 0⃗ of S, and
it also holds that v⃗ ∈ S0 ⇒ −v⃗ ∈ S0.
If we consider the two operation of sum and multiplication with a scalar defined on S,
restricted only to the elements of S0, then also S0 is a vector space.

2.1.3 Linear combinations
Given a set of k vectors {v⃗1, v⃗2, . . . , v⃗k} of S, and set of k real numbers {α1, α2, . . . , αk}, we
can compute the vector:

α1v⃗1 + α2v⃗2 + . . .+ αkv⃗k (2.13)

which will be called “ linear combination of the vectors v⃗1, v⃗2, . . . , v⃗k with coefficients α1, α2, . . . , αk”.

Linear dependence, linear independence

If all the coefficients α1, α2, . . . , αk are equal to zero, the linear combination (2.13) is equal
to the null vector. However, a linear combination can be equal to the null vector also in a
case when not all the coefficients are zero. So, this leads to the two following definitions.
Given a set of vectors {v⃗1, v⃗2, . . . , v⃗k} of S,

linear independence

if the only linear combination of those vectors that results in the null vector is the one with
all zero coefficients, the set of vectors is said linearly independent ;

linear dependence

if there exist one or more linear combinations of those vectors, that results in the null vector,
and where not all the coefficients are zero, the set of vectors is said linearly dependent.
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Basis of a vector space

If we have n linearly independent vectors

{e⃗1, e⃗2, . . . , e⃗n} (2.14)

and if it happens that any vector of S can be written as a linear combination of the basis
vectors (2.14), i.e.

∀v⃗ ∈ S ∃{α1, . . . , αn} ∈ R : v⃗ = α1e⃗1 + . . .+ αne⃗n (2.15)

then the set of vectors (2.14) is called a basis of the vector space.
It can be proven that if there exist a basis {e⃗1, . . . , e⃗n} of S with n elements, then any other
basis of S will have n elements. Then, the number n is called the dimension of the vector
space.

2.1.4 Important remark on the vector spaces
It is important to notice that in the definition of vector space there is no description of the
elements of it (the vectors). The definition only describes the relations between the elements
(the sum, the multiplication with a scalar, etc.). So, as long as we have the two operations
(sum and product with scalar), with the needed properties, we can define a vector space.
In particular, we can define a vector space where the elements are functions. The sum of two
functions can be defined as sum of the two values each function assumes on each value of the
independent variable:

f : x ∈ R → f(x) ∈ R (2.16a)
g : x ∈ R → g(x) ∈ R (2.16b)
f + g : x ∈ R → f(x) + g(x) ∈ R (2.16c)

and similarly for the multiplication with a scalar:

αf : x ∈ R → αf(x) ∈ R (2.17)

2.2 Differential equations

2.2.1 Classification of differential equations
In general, a differential equation is an equation that contains an unknown function f(x) and
its derivatives. A differential equation of order n is an equation that includes the independent
variable t, an unknown function f(t), and its derivatives up to derivative of order n.

Linearity

We can use a compact notation considering a “function of functions” F (sometimes this is
called an operator). E.g., if we consider F [f ] = sin f + af2 − bf ′, where we consider the sine
of the unknown function, the square of the unknown function, and its second derivative.
We can imagine an analogy between

- the way in which a function f takes a variable x and “combines” it in some way, maybe
creating a polynomial:

f : x → ax2 + bx+ c (2.18)

and

- the way in which an operator F takes a function f (and its derivatives) and “combines” it
in some way, maybe following the analogy of the polynomial:

F : f → af2 + bf + cf ′ + d (2.19)
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(with respect to (2.18), here we have also added a term with the first derivative).
So, we can “import” the concepts of linear (only first power), polynomial (any power), and
“non-algebraic” (also called transcendental, where we use trigonometric, exponential, loga-
rithmic terms, etc.), and apply those concepts also to the operators, and to the differential
equations that we can create with the operators.

Constant or non-constant coefficients

Following the analogy of the previous paragraph, in the case of linear or polynomial differ-
ential equations, we have the coefficients of the polynomial. As an example, in (2.18) and
(2.19) we have the coefficients a, b, c (and d). Now, those coefficients may be constant, or
they may be functions of the independent variable of the unknown function. In the first case
we call the differential equation “with constant coefficients”:

af2(x) + bf(x) + cf ′(x) + d = 0 (2.20)

and in the case they also depend on x we call the differential equation “with non-constant
coefficients”:

a(x)f2(x) + b(x)f(x) + c(x)f ′(x) + d(x) = 0. (2.21)

Note:
We should check in the text accompanying the equation, or check in the context, to un-
derstand whether the coefficients are constant, or they depend on the independent variable
of the unknown function. It is not enough if the equation is written without the explicit
dependence of the coefficients.

Partial derivatives

The unknown function f can be a function of more than one variable, as e.g. f(x, y) =
ax2+ by2. For functions of more than one variable, it is possible to define partial derivatives,
i.e. derivative that considers all the independent variables as constants, except for one, that
is considered as the only variable:

∂

∂x
f(x, y) =

∂

∂x

(
ax2 + by2

)
= 2ax+ by2

(2.22)

Notice how in the Leibnitz notation, the symbol d is replaced with the symbol ∂, as in ∂
∂x .

Summary

In summary, we can classify differential equations with respect to several things.

• Wether the differential equation contains partial derivatives or not:

– if the differential equation does not contain partial derivatives, it is called “ordi-
nary”

d

dx
f(x) + 2f(x) = 0 (2.23)

– if the differential equation contains partial derivatives, it is called “ordinary, with
partial derivatives”

∂

∂x
f(x, y) + 2

∂

∂y
f(x, y) = 0 (2.24)

• Wether the unknown function appears only in polynomials, with the first power:

– if the unknown function appears only in polynomials, with the first power, we
have a linear differential equation

a
d2

dx2
f(x) + b

d

dx
f(x) + cf(x) = g(x). (2.25)
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– if the unknown function appear with a power higher than 1, or it appears as the
argument of a non algebraic (transcendental) function the differential equation is
non linear, e.g.

a
d2

dx2
f(x) + b

d

dx
f(x) + cf2(x) + df(x) = 0 (2.26)

• Whether the coefficients are constant or not:

– if the coefficients of a polynomial (linear) differential equation are constant we call
it “(differential equation) with constant coefficients”;

– if the coefficients of a polynomial (linear) differential equation are a function of
the independent variable (the usual names for this variable are x, or t) we call it
“(differential equation) with non-constant coefficients”.

• Whether the equation has or not a term without the unknown function:

– if the term without the unknown function is zero, the equation is called homoge-
neous:

d2

dx2
f(x) + a

d

dx
f(x) + bf(x) = 0 (2.27)

– if the term without the unknown function is non-zero, the equation is called non-
homogeneous:

d2

dx2
f(x) + a

d

dx
f(x) + bf(x) = c (2.28)

• The order of the differential equation is the highest derivative of the unknown function
that appears in the equation.

2.2.2 simple forms
The most simple differential equation is the following:

d

dx
f = g (2.29)

where the function g(x) is some function of the independent variable x. This differential
equation is solved integrating the function g:

2.2.3 Superposition principle
Let’s consider a linear differential equation of order n:

a0f + a1f
(1) + a2f

(2) + . . .+ anf
(n) = 0. (2.30)

If it helps you, you can consider a compact notation, use the symbol Fl[] (where the footer
“l” stands for “linear”) and imagine that:

a0f + a1f
(1) + a2f

(2) + . . .+ anf
(n) = Fl[f ] (2.31)

This symbol represents an operator, that takes a function f , and returns the expression
a0f + a1f

(1) + a2f
(2) + . . .+ anf

(n) (which formally is another function):

Fl : f → a0f + a1f
(1) + a2f

(2) + . . .+ anf
(n). (2.32)

Now, the key observation is that if we have a function f that satisfies the equation (2.30),
and we consider a real number α, then also the function (αf) will satisfy the equation

a0f + a1f
(1) + a2f

(2) + . . .+ anf
(n) = 0 ⇒

a0αf + a1αf
(1) + a2αf

(2) + . . .+ anαf
(n) = 0

(2.33)
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which in the compact notation can be written as

Fl[f ] = 0 ⇒ Fl[αf ] = 0 (2.34)

Similarly, if we consider two functions f and g which satisfy (2.30):

Fl[f ] = 0

Fl[g] = 0
(2.35)

then also the sum function (f + g) satisfies equation (2.30):

a0(f + g) + a1(f
(1) + g(1)) + a2(f

(2) + g(2)) + . . .

+ an(f
(n) + g(n)) = 0.

(2.36)

In summary, given two solutions f and g of the linear differential equation (2.30), and two real
numbers α and β, we have that also the function (αf + βg) is a solution of the differential
equation (2.30). In figure 2.1 we have a plot of two functions f , and g and their linear
combination (αf + βg).

Figure 2.1: A plot of two functions and their linear combinations. In the last linear com-
bination (red line) we can see how the oscillating shape is enhanced (higher coefficient in
the linear combination) and the rising behaviour is reduced (lower coefficient in the linear
combination).

It is worth to notice that if the operator Fl was not linear, i.e. if the equation was not a
linear equation, this was not true. As an example, if in the differential equation the unknown
function appears with a power of 2:

af2 − bf ′ = 0 (2.37)

and if f(x) and g(x) are solutions, [f(x) + g(x)] are not necessarily a solution, because the
square of a sum gives an extra term, and the resulting expression:

a(f + g)2 − b(f ′ + g′) =

af2 + ag2 + 2afg − bf ′ − bg′
(2.38)
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may or may not be equal to zero.

2.2.4 Higher order linear homogeneous differential equations
(see, [Pet66, chap 4, section 27, pag 89] [Giu83, oss. 17.1, pag 188])
If we consider an homogeneous linear differential equation of order n > 1:

a0f + a1f
(1) + a2f

(2) + . . .+ anf
(n) = 0 (2.39)

it is always possible to transform it into a system of first order differential equations.
It is first convenient to rewrite the (2.39) as:

f (n) = Fl[x, f, f
(1), f (2), . . . , f (n−1)] (2.40)

Where we have isolated the highest order derivative on the left, and we have used a compact
notation, defining:

Fl[x, f, f
(1), f (2), . . . , f (n−1)] =

− a0f − a1f
(1) − a2f

(2) − . . .− an−1f
(n−1)

(2.41)

Then we introduce new functions, as f1 = f , then f2 = f ′, and then for the derivatives higher
than the first, as f3 = f ′

2 = f ′′, f4 = f ′
3, etc.. Then putting everything together in a system

of differential equations, we have:


f ′
1 = f2

f ′
2 = f3

. . .

f ′
n = Fl[x, f1, f2, f3, . . . , fn]

(2.42)

where as desired, only first order differential equations appear.

2.3 The Cauchy problem

If we consider the simple equation (2.29), we have seen that the solution is found just inte-
grating both sides of the equation:

f ′(x) = g(x)∫
f ′(x)dx =

∫
g(x)dx

f(x) = i(x) + c

(2.43)

where we have called i(x) the indefinite integral of g(x). This shows us that a first order
differential equation doesn’t have a single solution, but a “family” of solutions, i.e. a function
plus an unknown constant. It can be shown that for a differential equation of order n, the
number of unknown constants is equal to the order n. This can be understood intuitively,
thinking that we need to integrate n times to go from f (n)(x) to f(x).
So, if we want to to ask for one single solution, i.e. one specific function as solution, we
can not give just a differential equation, but we need to ask for additional conditions. And
we need to ask for a number of conditions sufficient to fix all the unknown constants. This
means that we need a number of conditions equal to the order of the equation.
As an example, for a first order equation:

{
f ′(x) = g(x)

f(x0) = f0
(2.44)

where x0 and f0 are fixed values of the independent variable and of the function f respectively.
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2.3.1 Existence and uniqueness
It can be proven that under certain hypotheses of continuity and derivability, the solution to
a Cauchy problem exists, and it is unique.

2.4 Ordinary linear differential equations with constant
coefficients

(see [Pet66, chap 6, pag 124] [MS95, sec 4B, pag 211])
It is possible to show, using linear algebra, what is the solution of a linear differential equation
of order n with constant coefficients.

2.4.1 Homogeneous equations
We first describe the case of homogeneous equations.
The solution will be the linear combination of several exponential functions, and the coeffi-
cients of this linear combination will be unknown constants.

Characteristic equation

To explicitly write the solution, we need to “build” an algebraic equation associated to the
linear differential equation. We will use as unknown variable of the equation a different letter
(e.g. λ), and we will write a term with power k for each term with derivative of order k of
the differential equation. As an example, to the equation:

af ′′ + bf ′ + cf = 0 (2.45)

will be associated the equation

aλ2 + bλ+ c = 0 (2.46)

which will have the two solutions

λ1,2 =
−b±

√
b2 − 4ac

2a
(2.47)

and all the solutions of the differential equations will be represented as:

f(x) = C1e
λ1x + C2e

λ2x. (2.48)

Note: The set of all the (infinite) solutions of the linear differential equation with constant
coefficients is a vector space, with dimension equal to the order of the equation. The expo-
nentials in the solution (2.48) are a basis of this vector space. It is in principle possible to
write the solution using other functions as a basis for the linear combination.
In the case two (or more) solutions of the characteristic equation coincide, in order to write
the linear combination (2.48), we will obtain linearly independent exponentials multiplying
them for the independent variable:

f(x) = C1e
λx + C2xe

λx. (2.49)

In the case of complex solutions, where (b2 − 4ac) < 0, it is possible to write the solution in
a real form using the Euler formula:{

eix = cosx+ i sinx

e−ix = cosx− i sinx
(2.50)

obtaining:

f(x) = C1 eαx cosβx+ C2 eαx sinβx, (2.51)
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where


α = −a

2

β =

√
−(b2 − 4ac)

2

(2.52)

(see also [MS95, page 213, formula (iii)] )

2.4.2 Non-homogeneous equations
The first step to solve a non-homogeneous linear differential equation with constant coeffi-
cients:

f ′′ + bf ′ + cf = g(x) (2.53)

is to solve the “associated” homogeneous equation.

f ′′ + bf ′ + cf = 0. (2.54)

The general solution of the associated homogeneous equation is a set of linearly independent
functions, as shown in (2.48):

{f1(x), f2(x)}. (2.55)

Then, we need to find one function that satisfy (i.e. is a solution of) the non homogeneous
equation:

f̃(x) such that f̃ ′′ + bf̃ ′ + cf̃ = g(x) (2.56)

.
Finally, the general solution (i.e. the set of all the infinite solutions) of the non-homogeneous
equation is the sum of the (2.48) plus the (2.56):

f(x) = C1e
λ1x + C2e

λ2x + f̃(x). (2.57)

2.5 Method of Lagrange

(Also called “method of the variation of constants”, see [Zil13, pag 156] and [MS95, pag 232])

This method allows to find a particular solution of a non-homogeneous differential equation,
after we have found the general solution of the associated homogeneous solution. Notice that
here there is no requirement for the coefficients to be constant.
We start with an example of a differential equation of the second order; we will see that this
method can be applied to equations of any order.
Let’s consider the equation:

d2f(x)

dx2
+ a1

df(x)

dx
+ a0f(x) = g(x) (2.58)

and let’s say that the general solution fo the homogeneous associated equation is {f1, f2}.
Then, the first step of the method is to solve the following set of differential equations:


dγ1
dx

f1 +
dγ2
dx

f2 = 0

dγ1
dx

df1
dx

+
dγ2
dx

df2
dx

= g

(2.59)
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This is an equation where the unknown functions are {γ1(x), γ2(x)}, and the two functions
{f1(x), f2(x)} are considered as known.
This system of equations can be solved, to first find the two derivatives {dγ1

dx , dγ2

dx }.
Once we have the derivatives, we can (hopefully) compute the integrals and find {γ1, γ2}:


γ1 =

∫
dγ1
dx

dx

γ2 =

∫
dγ2
dx

dx

(2.60)

Once we have found {γ1, γ2}, we can write the particular solution of the non-homogeneous
equation (2.58):

f̃(x) = γ1(x)f1(x) + γ2(x)f2(x). (2.61)

Notice that since in the end we need a linear combination of the functions {γ1, γ2}, when we
compute the integrals (2.60), we can neglect the constants of the indefinite integrals.
Finally, the general solution to the non-homogeneous equation will be:

f(x) = C1f1(x) + C2f2(x) + f̃(x) (2.62)

2.5.1 Generalization to order n

We have seen the case of an order-2 equation. We can extend to the case of order n:
We will have the general solution to the homogeneous equation, which will be the linear
combination of n functions:

C1f1 + C2f2 + . . .+ Cnfn (2.63)

and then we will need to find n unknown functions {γ1, γ2, . . . , γn}
Solving the following system of differential equations:



dγ1
dx

f1 +
dγ2
dx

f2 + . . .+
dγn
dx

fn = 0

dγ1
dx

df1
dx

+
dγ2
dx

df2
dx

+ . . .+
dγn
dx

dfn
dx

= 0

· · ·
dγ1
dx

dn−1f1
dxn−1

+
dγ2
dx

dn−1f2
dxn−1

+ . . .+
dγn
dx

dn−1fn
dxn−1

= g.

(2.64)

The matrix of the coefficients of this system has a name: the wronskian:


f1 f2 · · · fn
df1
dx

df2
dx

dfn
dx

· · · · · ·
dn−1f1
dxn−1

dn−1f2
dxn−1 · · · dn−1fn

dxn−1 .

 (2.65)

2.5.2 Exercise

[MS95, pag 233, ex. 4.47]
Using the Lagrange method, let’s solve (i.e. find the general solution) the following non-
homogeneous equation, considering that we already have the (general) solution of the ho-
mogeneous associated equation:
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d2f(x)

dx2
− f(x) = 3x2 − 1 (2.66)

where we have the following general solution for the associate homogeneous equation d2f(x)
dx2 −

f(x) = 0:

fh(x) = C1e
x + C2e

−x. (2.67)

At first, the Lagrange method consists in solving the following system of equations (2.59),
that in this case, considering (2.67), is:

dγ1
dx

ex +
dγ2
dx

e−x = 0

dγ1
dx

ex − dγ2
dx

e−x = 3x2 − 1

(2.68)

So now we solve algebraically this system, for the unknown functions dγ1,2

dx . It is more effective
to consider the derivatives dγ2

dx and dγ2

dx as the unknowns of this system. So, if we start with
the first equations we have:, we have:

dγ1
dx

ex +
dγ2
dx

e−x = 0 (2.69a)

dγ1
dx

ex = − dγ2
dx

e−x (2.69b)

dγ1
dx

= − dγ2
dx

e−x 1

ex
(2.69c)

dγ1
dx

= − dγ2
dx

e−2x (2.69d)

(2.69e)

and then, inserting this in the second equation:

dγ1
dx

ex − dγ2
dx

e−x = 3x2 − 1 (2.70a)

− dγ2
dx

e−2x − dγ2
dx

e−x = 3x2 − 1 (2.70b)

− dγ2
dx

e−x
(
e−x + 1

)
= 3x2 − 1 (2.70c)

− dγ2
dx

1

ex
(
e−x + 1

)
= 3x2 − 1 (2.70d)

− dγ2
dx

(
1 + e−x

)
= 3x2 − 1 (2.70e)

dγ2
dx

= − 3x2 − 1

(e−x + 1)
(2.70f)

[...] (here I can’t reproduce the book’s result /)
Finally

dγ1
dx

= e−x 3x
2 − 1

2
dγ2
dx

= −ex
3x2 − 1

2
.

(2.71)

Then, as usual in this method, the relatively more difficult part is to integrate these func-
tions, to find γ1 and γ2.
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We can use two times the “integration by parts”
∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx+c,

and, using de−x

dx = −e−x write:

γ1 =

∫
3x2 − 1

2
e−xdx

=
1

2

∫ (
3x2 − 1

)
e−xdx =

1

2

[
−
(
3x2 − 1

)
e−x −

∫
6x e−xdx

]
= −1

2

(
3x2 − 1

)
e−x − 3

[
−x e−x −

∫
e−xdx

]
= e−x

[
−3

2
x2 +

1

2
+ x+ 1

]
= −1

2
e−x

[
3x2 − x− 3

]
(2.72)

(Again, here I can’t get the book’s result: γ1 = − 3
2e

−x
[
x2 + 2x+ 5

3

]
)

Similarly, applying the same approach we can compute γ2(x).
Finally, the general solution of the equation (2.66) will be:

f(x) = C1e
x + C2e

−x −
[
γ1(x)e

x + γ2(x)e
−x

]
(2.73)

2.6 Fourier theory

This section will introduce the theory of Fourier series and Fourier transforms. Those subjects
are very important in many fields of Science, and involve rather deep mathematic knowledge.
We will not cover all the details, that go well beyond the scope of the Calculus course.
We will use some of the results from this section, to solve the heat equation, in the following
section. Solve the heat equation is incidentally the historical reason that lead Joseph Fourier
to develop the theory that we will present in this section.

References: [ZC08, cap. 11, pag. 397], [KF61, sec. §54, pag. 96], [KF80, sec. VII §3, pag 383].

2.6.1 Vector space of functions
When we have studied the linear differential equations, we have already seen the concept
that a set of functions can be organized as a vector space. At the root of this idea is the fact
that a linear combination of solutions of a given linear differential equation is still a solution
of the equation. Here we want to expand this idea.
We start considering all the functions defined on the finite interval [a, b], and we call this set
V . Since we can define the linear combination of functions of V , which still belong to V , we
can imagine that V is a vector space. We are not going to show rigorously this last statement,
just consider that we would need to prove the closure property: any linear combination of
elements of V is still an element of V .

Scalar product

Since the vector space V we want to build is euclidean, we want to define a scalar product
between functions. So, we can define the scalar product between elements of V as:

(f, g) =

∫ b

a

f(x)g(x)dx. (2.74)

Once we have a scalar product, we can define orthogonal functions as those functions f(x), g(x) ∈
V such that

f(x)⊥g(x) ⇔ (f, g) =

∫ b

a

f(x)g(x)dx = 0. (2.75)
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Norm of a function

We define the norm of a function as the square root of the scalar product of the function
times itself:

∥f(x)∥ ≡

√∫ b

a

f(x)2dx (2.76)

We call normal a function that has norm ∥f(x)∥ = 1.
Notice that if the norm of a function ∥f(x)∥ is different from 1, it is easy to compute a
function proportional to that, but with norm one: we compute the norm of the function, and
then divide the function by its norm:

fnorm(x) =
1

∥f(x)∥
f(x) (2.77)

We call this technique normalization.

Orthonormal basis

Then, we can build a set of functions {ϕ0, ϕ1, . . . , ϕn} that are all orthogonal to each other,
and that have all norm=1:

(ϕi, ϕj) = δi,j (2.78)

where we have used the symbol δi,j which is called Kroneker delta

δi,j =

{
1 if i = j

0 if i ̸= j .
(2.79)

Then, our goal is even more ambitious: we want to build a basis for our vector space V . So,
we need a set of functions of V , with the property that all the function of the set should be
linearly independent. Again, we are not going to discuss this part rigorously, we only say
that:

• if we want for V the property of closure, i.e. that any linear combination of functions
of V is still a function of V , then the number of elements of the basis will be infinite.
This means that the dimension of V is infinite.

• to realize the closure, we need to include special functions, and to include these spe-
cial functions (the distributions) we need to use a different definition of integral (the
Lebesgue integral).

The Fourier theory aims at the realization of a basis for the functions that is ortonormal, i.e.
we want that any pair of functions of the basis is orthogonal to each other, and that all the
functions of the basis are normalized.
We are not going to derive the basis of Fourier, we are only going to present it, and to prove
that they indeed are orthonormal.

The Fourier set{
1

2
, cos(nx), sin(nx)

}∞

n=1

(2.80)

is such that any function of V can be written as a linear combination of the functions of the
Fourier set (2.80) .
It is possible to verify that each function of the set is orthogonal to each other.
In this form, the functions are not normalized; a normalized version is:
[...]
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2.6.2 The Fourier series

Infinite linear combination

If we write formally the linear combination of the “basis” functions in (2.80) :

f(x) =
a0
2

+

∞∑
k=1

ak cos(kx) + bk sin(kx) (2.81)

we can see this as a method to write any function (defined on the interval [a, b]) as a sum
of the “Fourier functions”. This can be useful in many circumstances. As an example,
the trigonometric functions can be easily computed as solutions of a differential equation.
Then we can write the initial/boundary conditions as linear combinations of trigonometric
functions, and find the general solution to the differential equation.

Intuitive interpretation

[...]

2.7 Partial differential equations

Sometimes the name “Partial Differential Equation” is shortened as PDE. Similarly, the name
“Ordinary Differential Equation” is shortened as ODE.

2.7.1 Laplacian operator
Let’s consider a function of time and space f(t, x1, x2, x3). We define the laplacian operator
∇2 as follows:

∇2 ≡ ∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

(2.82)

so that:

∇2f(x1, . . . , xn) =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

. (2.83)

The previous is the most general definition, in n variables. Of course, this operator can be
defined in particular in the case where the spatial variables are three, or two, or just one.

2.7.2 Heat propagation equation
See [ZC08, chap. 12]
(An interesting video lecture on this subject can be found here:
https://www.youtube.com/watch?v=ToIXSwZ1pJU, while this is the link to the full playlist,
about differential equations).
Using the operator (2.82), we can introduce an important differential equation:

∂f(x⃗, t)

∂t
+ d∇2f(x⃗, t) = g(x⃗, t) (2.84)

This equation is very important, has many “applications” in different fields of science.
The full discussion of this equation, and its solutions, needs advanced mathematical subjects,
so, in our course we will inly look at some parts of the full discussion, and in some points we
will take some “shortcuts”, that will be highlighted.
Let’s start to discuss a simple case, where the spatial part is unidimensional: x⃗ → x. More-
over, to make the equation even more simple, we assume d = 1. In this case the equation
is:

https://www.youtube.com/watch?v=ToIXSwZ1pJU
https://www.youtube.com/watch?v=p_di4Zn4wz4&list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6
https://www.youtube.com/watch?v=p_di4Zn4wz4&list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6
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∂f(t, x)

∂t
− ∂2f(t, x)

∂x2
= 0 (2.85)

Here we will discuss the solution of a Cauchy problem, i.e. the solution of the differential
equation together with the initial condition and boundary conditions. In this case the solution
is a function f(x, t):


∂f(t, x)

∂t
− ∂2f(t, x)

∂x2
= 0

f(0, x) = x

f(t, 0) = f(t, 1) = 0

(2.86)

(here I am following the computation from the italian wikiedia page, here is the translation
in english obtained with ’google translate’ )
First, we apply the method of separation of variables. This method consists in assuming
the hypothesis that the solution of this PDE can be written as a product of two parts, one
depending only on time, and one depending only on position:

f(t, x) = T (t) ·X(x). (2.87)

If we plug this hypothesis in the equation we have:

∂T (t) X(x)

∂t
− ∂2T (t) X(x)

∂x2
= 0 (2.88a)

X(x)
dT (t)

dt
− T (t)

d2X(x)

dx2
= 0 (2.88b)

here we have brought outside the derivative the factors that do not depend on the variable
of the derivative (they are constant, with respect to that derivative. Moreover, the derivative
is now applied to a function that only depends on one variable, so they are no more partial
derivatives, but total derivatives.
Now, we can group the spatial terms and the temporal terms separately:

X(x)
dT (t)

dt
= T (t)

d2X(x)

dx2
(2.89a)

1

T (t)

dT (t)

dt
=

1

X(x)

d2X(x)

dx2
. (2.89b)

Let’s observe this last equation: we have a function on the left, which must be equal to a
function on the right. However, the function on the left only depends on t, and only on t,
and the function on the right depends on x, and only on x. Still, they must be equal, for any
value of x and t. The only possible situation that satisfies this request is that both terms are
equal to a constant, the same constant that we will call λ, that is constant with respect to t
and x:


1

T (t)

dT (t)

dt
= λ

1

X(x)

d2X(x)

dx2
= λ

(2.90)

So, assuming the initial hypothesis f(t, x) = T (t) · X(x), we have turned the PDE into a
system of two ODE, one in t and one in x.

https://translate.google.com/translate?hl=&sl=it&tl=en&u=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FEquazione_del_calore
https://translate.google.com/translate?hl=&sl=it&tl=en&u=https%3A%2F%2Fit.wikipedia.org%2Fwiki%2FEquazione_del_calore


22 2023-11-15 21:00

Solution of temporal part

Let’s work first on the first equation:

1

T (t)

dT (t)

dt
= λ

dT (t)

dt
= λT (t)

(2.91)

We can solve “immediately” this differential equation just using the formula for the derivative
of the “composite exponential”: deη(t)

dt = eη(t) dη(t)dt , and in particular, since in our case is
η(t) = λt, and dλt

dt = λ, we have

T (t) = eλtC (2.92)

where C is the usual constant coming from the indefinite integration. To assign a value
to this integration constant C we must consider the initial condition. However, the initial
condition is expressed in terms of the full function f(t, x), where here we need the initial
value for the “factor” T (t). So here we will use a temporary expression T (0), that we need
to express explicitly later:

T (t) = T (0)eλt. (2.93)

Solution of the spatial part

Let’s now look at the spatial ODE:

1

X(x)

d2X(x)

dx2
= λ

d2X(x)

dx2
= λX(x)

d2X(x)

dx2
− λX(x) = 0.

(2.94)

We need to solve this equation together with the boundary conditions:


d2X(x)

dx2
− λX(x) = 0

X(0) = X(1) = 0

(2.95)

To solve this equation we will use the theory of Fourier. Indeed, historically Fourier developed
his theory to solve the heat equation.
We start noticing that a sin(x) function would satisfy this equation, since d sin(x)

dx = cos(x),
and d cos(x)

dx = − sin(x) we have:

d2 sin(x)

dx2
= − sin(x). (2.96)

We can also notice that any other sin(nx) function with a different period, would be a solution
for this equation

2.8 Appendix on Fourier theory

In this section I copy old notes that I have on Fourier theory. I have not checked deeply this
material, but it should be ok. I will incorporate in the section on Fourier theory later.



Chapter 3

Fourier Theory

3.1 Periodic functions

3.1.1 functions with period 2π

Let’s consider the space L2(−π, π) of the functions “square-Lebesgue-integrable” over (−π, π).
This space is:

• euclidean

• complete

• of infinite dimension

and therefore it is an Hilbert space.
We note that using the extention by continuity we can extend what we find for the function
defined in (−π, π), to the functions defined on R, bounded and periodic, with period 2π.

trigonometric form

It is possible to show that a basis for this space is:

{1, cos(kx), sin(kx)}∞k=1 (3.1)

If we expand one of such functions on this basis we can write:

f(x) =
a0
2

+

∞∑
k=1

ak cos(kx) + bk sin(kx) (3.2)

where we have defined

ak ≡ 1

π

∫ π

−π

f(t) cos(kt)dt (3.3a)

bk ≡ 1

π

∫ π

−π

f(t) sin(kt)dt . (3.3b)

In [KF80] can be found theorems which specify the hypotheses for f(x) that guarantee the
convergence of the sum, and the fact that it converges at an unique function.

complex form

(see [KF80, cap. VII, §3] (Cap VII Spaces of integrable functions, §3. Sistems of orthogonal
functions in L2. Series with respect to orthogonal systems) ) Instead of using the basis (3.1),
we can use the basis:

{eikx}+∞
k=−∞ (3.4)

23
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The basis (3.4) is obtained from (3.1) just applying Euler relations:

cos(kx) =
eikx + e−ikx

2
(3.5a)

sin(kx) =
eikx − e−ikx

2i
(3.5b)

Then, the Fourier series using this basis becomes:

f(x) =
1√
2π

∞∑
k=−∞

ck eikx (3.6)

where the coefficients ck can be expressed as functions of the coefficients ak and bk of the
trigonometric form (again using Euler’s relations):

c0 =
a0
2

(3.7a)

ck =
ak − ibk

2
(3.7b)

c−k =
ak + ibk

2
(3.7c)

and then explicitly:

ck =
1√
2π

∫ π

−π

f(x) e−ikxdx (3.8)

3.1.2 Functions with period 2l

Let’s now consider the space L2(−l, l) Hilbert space of the functions “square-Lebesgue-
integrable” over (−l, l). Be the function f(x) an element of such space defined on a finite
interval (−l, l).
Again, using the extention by continuity we can also consider the functions defined on R,
bounded and periodic, with period 2l.

trigonometric form

It is possible to show that a basis for the space L2(−l, l) is:{
1, cos

(
k
π

l
x
)
, sin

(
k
π

l
x
)}∞

k=1
(3.9)

Let’s suppose this function satisfy the hypotheses under which the Fourier series converges.
Then, in analogy to (3.2) we can write:

f(x) =
a0
2

+

∞∑
k=1

ak cos
(
k
π

l
x
)
+ bk sin

(
k
π

l
x
)

(3.10)

where we have defined

ak ≡ 1

l

∫ l

−l

f(t) cos
(
k
π

l
t
)
dt (3.11a)

bk ≡ 1

l

∫ l

−l

f(t) sin
(
k
π

l
t
)
dt . (3.11b)

Then we can rewrite (3.10) with the explicit (3.11) as:

f(x) =
1

2l

∫
−
f(t)dt +

∞∑
k=1

[
1

l

∫
−
f(t) cos

(
k
π

l
t
)
dt cos

(
k
π

l
x
)
+

+
1

l

∫
−
f(t) sin

(
k
π

l
t
)
dt sin

(
k
π

l
x
)] (3.12)
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f(x) =
1

2l

∫
−
f(t)dt +

∞∑
k=1

[
1

l

∫
−
f(t) cos

(
k
π

l
t
)
cos

(
k
π

l
x
)
dt+

+
1

l

∫
−
f(t) sin

(
k
π

l
t
)
sin

(
k
π

l
x
)
dt

] (3.13)

where we have included the cos(kx) and sin(kx) since they do not depend on the integrating
variable t. Merging the two integrals we have:

f(x) =
1

2l

∫
−
f(t)dt+

∞∑
k=1

1

l

∫
−
f(t)

[
cos

(
k
π

l
t
)
cos

(
k
π

l
x
)
+ sin

(
k
π

l
t
)
sin

(
k
π

l
x
)]

dt (3.14)

Then we use the product-to-sum trigonometric identities

sinA sinB = (1/2)[cos(A−B)− cos(A+B)] (3.15a)
cosA cosB = (1/2)[cos(A−B) + cos(A+B)] (3.15b)

⇓
sinA sinB + cosA cosB = cos(A−B) (3.15c)

f(x) =
1

2l

∫ l

−l

f(t)dt+

∞∑
k=1

1

l

∫ l

−l

f(t) cos
[
k
π

l
(t− x)

]
dt. (3.16)

complex form

In analogy with what we have done in subsection 3.1.1, we can use the Euler’s relations and
re-write the basis (3.9)

{
eik

π
l x
}∞
k=−∞ (3.17)

and then (3.10) becomes

f(x) =

∞∑
k=−∞

ck ek
π
l x (3.18)

where the coefficients are defined as

ck ≡ 1

l

∫ l

−l

f(t) e−ik π
l t dt (3.19)

3.2 Functions defined on R

We want to extend the results to the space of L2(−∞,∞), the Hilbert space of the functions
“square-Lebesgue-integrable” over R. As a first approach we consider a non-rigorous limit
l → ∞ of (3.16).
First, we introduce the quantities:

λk ≡ k
π

l
(3.20a)

∆λ ≡ π

l
(3.20b)
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3.2.1 trigonometric form

We can re-write (3.16) using (3.20) as:

f(x) =
1

2l

∫ l

−l

f(t)dt+
1

π

∞∑
k=1

π

l

∫ l

−l

f(t) cos
[
k
π

l
(t− x)

]
dt

=
1

2l

∫ l

−l

f(t)dt+
1

π

∞∑
k=1

∆λ

∫ l

−l

f(t) cos [λk(t− x)] dt.

(3.21)

Then we notice that in the hypothesis
∫∞
−∞ |f(t)|dt < ∞ it is:

lim
l→∞

1

2l

∫ l

−l

f(t)dt = 0. (3.22)

Looking at the second term, we see the infinite sum, where the “running index” is k. As
this running integer index takes its values from 1 to ∞, we can consider λk = k π

l as an
“independent variable”, which takes its discrete values, each at a constant distance ∆λ = π

l
from one another. As the l parameter grows , the independent discrete variable λk become
more and more similar to a continuous variable:

lim
l→∞

λk = λ (3.23)

and the constant size of the “step” ∆λ becomes smaller and smaller, as an infinitesimal
differential:

lim
l→∞

∆λ = dλ. (3.24)

Being the sum of a continuous variable with differential steps, and taking into account (3.22),
we then re-write (3.21) in the limit l → ∞ as:

f(x) =
1

π

∫ ∞

0

[∫ ∞

−∞
f(t) cos [λ(t− x)] dt

]
dλ . (3.25)

Now, we consider that as a function of λ, the expression in the bigger square bracket (i.e.
the integrand in dλ) is an even function of λ (is a cos). And since the integral from 0 to
+∞ of an even function is a half of the integral of the same function from −∞ to ∞, we can
rewrite:

f(x) =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f(t) cos [λ(t− x)] dt

]
dλ (3.26a)

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) cos [λ(t− x)] dt

]
dλ . (3.26b)

3.2.2 complex form

Since sin is an odd function, we can also write:

1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) sin [λ(t− x)] dt

]
dλ = 0 (3.27)

and, multiplying for −i, still:

1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
−if(t) sin [λ(t− x)] dt

]
dλ = 0 (3.28)
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Then we can add it to (3.29a) without altering it:

f(x) =
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) cos [λ(t− x)] dt

]
dλ (3.29a)

+
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
−if(t) sin [λ(t− x)] dt

]
dλ (3.29b)

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) {cos [λ(t− x)]− i sin [λ(t− x)]} dt

]
dλ . (3.29c)

Now, using the Euler’s formula

cos θ − i sin θ = e−iθ (3.30)

we have:

f(x) =
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) e−iλ(t−x) dt

]
dλ (3.31a)

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) e−iλt eiλx dt

]
dλ (3.31b)

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(t) e−iλt dt

]
eiλx dλ (3.31c)

where we have taken the part of the exponential non depending on t out of the inner integral.
Finally, we can see the expression in square brackets as a coefficient in the outer integral,
and define it as:

F [f ](λ) ≡ 1√
2π

∫ ∞

−∞
f(t) e−iλt dt (3.32)

so to write:

f(x) =
1√
2π

∫ ∞

−∞
F [f ](λ) eiλx dλ (3.33)

3.2.3 Comments
In passing from the case of periodic functons, to the case of generic, non-periodic functions, we
have used a non-rigorous approach, imagining to start with a period 2l, and then consider the
limit l → ∞. For a periodic function, the Fourier expansion is a series, over infinite terms. For
each term, the frequency of the oscillating function (element of the Fourier basis, also known
as a mode) changes of a fixed amount, π

l . This frequency increment is inversely proportional
to the (half) period l. It means that going from periodic to non-periodic functions, in the
frequencies domain we go from discrete to continuous changes. We remark that in both cases
the frequencies involved are infinite, i.e. the sum over the frequencies has infinite terms. In
figure 3.1 a drawing shows the link between the frequencies domain and the “direct” domain.



28 2023-11-15 21:00

l
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Figure 3.1: l is the (half) period
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